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Elementary Mathematics
A Teaching-Learning Perspective

This article discusses the nature of the difficulty in learning and teaching elementary
mathematics from the viewpoint of the psychology of learning, focusing on some key topics

such as number operation and algebra and how children learn these concepts. The paper also
seeks to examine the reasons why many topics in school mathematics seem difficult and to

make the point that what is difficult can still be taught and learnt. What is required is often
the coordination of a culturally developed sign system with an intuitive base. This coordination
is a process that happens naturally and spontaneously if children are given opportunities and

situations they find motivating.

K SUBRAMANIAM

Introduction

The mathematics taught at school is relatively well-defined
and constant across most contemporary cultures in the
world. There is evidently agreement about its place in what

we choose to pass on to younger generations. It would be a
mistake, however, to equate its worth merely with its utility.
Mathematics, like music, is one of the defining accomplishments
of humankind, and a part of our shared legacy. But, unlike music,
it has a wide, even ‘unreasonably’ wide application in many
intellectual and practical pursuits. So, to deny access to this part
of the legacy is to promote a policy of exclusion, not just in the
cultural but also in the social and political sense.

The imperative of equity is in stark contrast with the actual
achievement of our school students in mathematics. The state
of education is dismal as a whole, but mathematics education
represents its lowest point. This forces one to reflect on both
the content of elementary mathematics taught in school and on
its pedagogy, and on both in the context of each other. Hence
the title and theme of this article. I intend in this article to discuss
the nature of the difficulty in learning and teaching elementary
mathematics. This will involve a focus on some of the key topics
of elementary mathematics: number, operation and algebra. The
viewpoint will be one of the psychology of learning: how the
corresponding mental structures develop as a student acquires
understanding of the key concepts of elementary mathematics.

The discussion will therefore be primarily about the insights
gained from cognitive studies of mathematics learning. I will also
make passing reference to the actual situation of mathematics
education from time to time. In doing so, I do not wish to advocate
any particular view or approach as a solution to existing problems.
Rather, the purpose of these references is to not lose sight of
a very pertinent background. The references will also serve as
a useful counter-point to the discussion, since the meaning of
elementary mathematics must be construed more broadly than
is usually the case.

Mathematics in School

In a newspaper article, a teacher trainer once reported a dis-
cussion that he had with a group of teachers. He had asked the

teachers to solve the problem 981 ÷ 9. Many teachers had
obtained the answer as 19 instead of 109. During the argument
that ensued, teachers who had got the correct answer pointed
out that one cannot get back 981 by multiplying 19 and 9. One
of the teachers from the ‘19’ group multiplied 19 and 9 and
actually obtained 981, making a second error by not carrying
over 8!

Clearly, the ability to merely execute a procedure does not
amount to mathematical knowledge. In this distressing incident,
the division procedure for many of the teachers was only an
isolated prescription. School mathematics, in contrast, is a tightly
integrated body of knowledge. Division is linked to multiplica-
tion as an inverse operation, and multiplication is repeated addition.
As we saw, one of the teachers did attempt to invert the division
operation to justify the procedure but did not really succeed in
persuading his colleagues. Using the fact that multiplication is
repeated addition may also not have helped in avoiding the
981 ÷ 9 = 19 error. For one can always add nine 19’s and make
an error by failing to carry over and obtain 981 as the sum. What
we need to know further is that the addition procedure is fun-
damentally dependent on the positional notation that we use for
numbers. From another angle, division represents the process of
equal sharing: how much would each worker get if we divided
wages of Rs 981 among nine workers? To give only Rs 19 to
each worker would surely lead to a revolt!

It is the conceptually tightly knit domain of mathematical
knowledge that we want pupils to acquire in the course of school
education. This is not an excessive demand on the cognitive
capacities of the average student, even though the level of
mathematical ability attained by most school students at present
is far from this goal. We know from interaction with teachers
and students that they can and do enjoy a sense of discovery
in mathematics when they are exposed to it from a perspective
that emphasises understanding and the connections between
concepts. Such experiences serve to correct the pessimistic
inferences that one is tempted to draw from the incident described
above. For many teachers, the sense of discovery is genuine since
the exposure is different from what they are used to in the course
of their teaching. One begins to think that the problem of mathe-
matics education is the manner in which mathematics is taught
and learnt generation after generation. School mathematics,
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it would seem, is in the grip of a teaching tradition with a
misplaced emphasis.

One must emphasise that developing an understanding of
mathematics even at the school level is not trivial. The widespread
belief among teachers and students that mathematics is difficult
attests to this. How then can one claim that it is not beyond the
cognitive capacity of the average student? It is in answering this
question that a closer analysis of how children learn elementary
mathematical concepts is of relevance. We shall see that from
the cognitive point of view, even the simple concepts that are
acquired spontaneously by nearly every child represent impres-
sive achievements. The coordination of separately learnt concepts
(or schemas) that is required for the concept of number to develop,
is not qualitatively different from the coordination required to
acquire other concepts in school mathematics. The purpose of
this article is therefore twofold – to examine the reasons why
many topics in school mathematics seem difficult, and to per-
suade the reader that what is difficult can still be taught and learnt.

Developing an understanding of the structure of mathematics
is not the only element missing in the received tradition of
mathematics teaching. Mathematics is also an excellent training
ground in problem solving. The importance of problem solving
ability in an increasingly technologically-driven economy is not
difficult to concede. In mathematics, a great variety of well-
defined problems can be posed. The difficulty level of the
problems can be finely controlled to satisfy pedagogic specifi-
cation. However, one may legitimately raise the question whether
there is a general domain-independent problem solving ability
and whether acquiring the ability to solve problems in one
domain, say mathematics, transfers to other domains. In problem
solving, knowledge and technique are not everything. Some of
the most important factors in developing problem solving ability
are attitudes and beliefs about one’s own abilities [Schoenfeld
1987]. Even if the techniques that one learns in the course of
problem solving in mathematics cannot be applied in other
domains, the attitude and the willingness to tackle problems are
likely to be carried over. Some research has addressed the question
of transfer, but the transfer of skills and attitudes developed over
a long term across broadly defined domains is a difficult question
to investigate. Nevertheless, the possibility of transfer is an
assumption that underlies much of the effort in education. If
we wish students to benefit from learning problem solving,
both cognitive and attitudinal factors need to be addressed
squarely and emphasis must be laid on solving new or unfamiliar
problems.1

Mathematics occupies a special place in our cultural heritage
since it exemplifies knowledge that has been rigorously examined
for its validity. Mathematics rests on the solid foundation of a
strict notion of deductive proof. It is for this reason that since
Greek times, mathematics has spurred advances in other branches
of knowledge: astronomy, philosophy, logic, physics and chem-
istry. The axiomatic structure into which geometry was cast by
Euclid represented something worth emulating in a wide variety
of disciplines.

One might think that deductive proof and the axiomatic struc-
ture of mathematics are not of much concern to school mathe-
matics, which is an enterprise aimed at educating the wider
citizenry and public. A cursory comparison of the school cur-
riculum with the mathematics taught in college shows that while
proofs are central to college mathematics, they are only barely
present in school arithmetic and algebra. It is only in the synthetic

geometry taught at school that proofs have an important place.
One might think that this is addressed only to a fraction of the
student population, namely, those who will eventually take up
a study of mathematics or a related subject. However, deductive
reasoning and the presentation of topics organised in an axiomatic
structure address a need felt by many students who experience
the freedom to question what they are learning. When their
thinking is unfettered, children naturally ask for justification of
the propositions that are thrown at them. As a teacher attempts
to answer them, such demands for justification can regress rapidly
to the simpler propositions that underlie others, but which are
harder to prove or justify. If the process of inquiry is not halted
by dogmatic injunction, it will only be satisfied by a properly
developed axiomatic structure. The opportunity to experience this
movement of thought is offered by the deductive organisation
of mathematics. The axiomatic structure also provides a sequenc-
ing of the elements of knowledge that has a reasonable basis
and can hence be reconstructed by a learner. This makes it
possible for the piece of knowledge to be recalled and rescanned
without the aid of external representations, an activity that is
important if learning is to result in genuine understanding.

Cognitive studies of mathematics learning have focused a great
deal on issues of understanding core mathematical concepts. The
research literature on problem solving or on the role of deductive
reasoning in school mathematics is relatively sparse. This is not
an indication that the importance of these aspects is not recognised.
Rather, the widespread failure of mathematics teaching in cre-
ating a mathematically literate population, together with the
impetus from the traditional discipline of cognitive psychology
have given mathematics education its current focus. Accordingly,
in the sections below, I will not discuss problem solving and
deductive reasoning further but will focus on how much we have
understood of how children learn about numbers, operations and
algebra.

The Understanding of Number

The most fundamental concept of mathematics is number. How
is the knowledge of number structured in the developing mind
of the child? It is important to remember that in the psychological
context, we view knowledge from the perspective of learning.
The tools and symbolism that we use to structure mathematical
knowledge for other purposes may therefore be inappropriate in
understanding mathematical cognition. Formally, the concept of
number can be defined axiomatically, starting with Peano’s
axioms for natural numbers and defining other kinds of numbers
in terms of the natural numbers: negative numbers as additive
inverses of natural numbers, rational numbers as equivalence
classes of ordered pairs of integers, real numbers as dedekind
cuts and so on. From the psychological point of view, to have
the concept of the natural number is to acquire a stable perception
of the invariance of a set of objects under certain kinds of
transformations. We shall elaborate this view, due to Piaget,
below.

It would be appropriate to mention here the approach that Piaget
used to understand the structure of knowledge in human cognitive
agents. His approach was to study the successive stages of
knowledge as it develops in children, to describe the differences
among these stages with respect to each other and with respect
to fully developed adult knowledge. This ‘genetic epistemo-
logical’ approach, as Piaget termed it, allowed Piaget to identify



Economic and Political Weekly August 30, 20033696

characteristic and unforeseen differences between children’s
knowledge and adult knowledge. Some of Piaget’s findings have
defined the agenda for much of the later work in cognitive
developmental psychology.

One of the most striking experiments that Piaget did had to
do with children’s understanding of number. In the number
conservation task, children were shown two rows of objects, both
rows containing an equal number of objects so arranged that the
one-to-one correspondence between the rows was evident. When
the children were asked whether the two rows contained the same
number of objects, the children judged them to be equal. Then
the experimenter spread out the objects in one of the rows while
the children were looking on and repeated the question. Surpris-
ingly, many young children, typically those younger than six years
of age, said that the longer row contained more objects although
nothing had been added to or removed from the row.

While this experimental result has been replicated a large
number of times, the interpretation of the result has generated
a significant debate [Bryant 1996]. Why do the children fail to
see that the numbers are still equal in the two rows? One of the
explanations is that the children misinterpret the implicit social
dimension of the task. The experimenter does something, pro-
duces a visible change and repeats a question that was asked
earlier. Under such circumstances, children might feel compelled
to change their answer, especially since one can expect them to
be unclear about the experimenter’s intentions. Variations of the
task have been devised to sidestep this difficulty: the children
are asked only one question after the equal rows are presented
and one row is altered, or a ‘naughty Teddy’ is introduced who
deliberately disturbs the arrangement to confuse the experi-
menter. These variations do reduce the number of children failing
the task, but the surprising failure of younger children and the
systematic development with age that Piaget found persist.

A different response to Piaget’s discovery of the failure to
conserve number by young children was made by Gelman and
her colleagues, whose work has had much influence on early
number learning research. In a widely cited study, Gelman and
Gallistel (1978) interpreted the failure in the conservation task
as a result of the children’s poor skills at counting. For Piaget,
one-to-one correspondence between two sets is the defining
relation for cardinality and is hence the foundation for the concept
of number. The act of establishing one-to-one correspondence
represents the basic schema for making a judgment about car-
dinality.2 This need not however be the case. Establishing one-
to-one correspondence between sets is hard when the sets have
an arbitrary spatial layout, which is how children encounter most
collections in real life. Children may be therefore be disinclined
to apply such a difficult procedure in any situation. In contrast
to Piaget, for Gelman, the primary schema for establishing the
equality of two sets having the same cardinality is the action of
counting. Her claim is that till children have fully developed their
skills at counting, they are not confident of their judgments about
relative numerosities and hence fail conservation tasks.

Accordingly, Gelman’s approach redefines the central ques-
tions in understanding how children acquire the concept of
number. She asks what the basis is on which children build their
skill of counting. Do they possess an understanding of the
principles underlying the act of counting at a very young age?
She identifies five such principles.
(1) One-to-one correspondence: This principle is framed differ-
ently from Piaget’s one-to-one correspondence. For Piaget, the

correspondence was between two sets, while for Gelman the
primary correspondence relevant to counting is the one-to-one
correspondence between the tokens used for counting (the number
words) and the items that are tagged by the tokens. Each and
every item in the set must be tagged once and once only.
(2) Stable ordering: The tokens used for counting, that is, to tag
the elements of the set must have a fixed order. The order may
be different from the conventional order of number words, and
sometimes is different for young children who are beginning to
count.
(3) Item indifference: All items are equal with respect to the
tagging action. Homogeneous or heterogeneous sets can be counted.
(4) Order irrelevance: The order in which different items are
tagged has no bearing on the outcome of the counting.
(5) Cardinality: The last token called out (the last number word,
for example) names a property of the entire set. Thus if the last
tag is ‘5’, 5 is the property of the set as a whole, namely, its
cardinal value.

Gelman’s significant finding is that children’s behaviour shows
the operation of these counting principles from a very young age,
from about four years or even younger. This is in sharp contrast
to Piaget, who did not recognise children as having the concept
of number till six or seven years of age. If very young children
are indeed aware of these principles, then they are not just playing
a ‘word game’ when they count or pretend to count. It is highly
improbable that they internalise the ‘how to count’ principles
by merely observing adults count without having some internal
‘template’ that allows them to implicitly extract the principles.
The line of argument is very much Chomskyian and is an instance
of the considerable influence of Chomsky’s work on syntax on
the whole field of cognitive developmental psychology. Gelman’s
response to Piaget rests on the competence-performance distinc-
tion. Children have a basic competence – the internalisation of
the how-to-count principles – but have not yet perfected their
skill at actual counting. Hence their reluctance to apply it to tasks
such as number conservation. When faced with a situation that
requires them to compare the numerosity of two sets, children
need to rely on some characteristic in order to make a judgment.
If both counting and one-to-one correspondence are judged to
be unreliable from past experience, they are likely to rely on a
characteristic such as length, thereby producing the failure elic-
ited in the Piagetian conservation experiment.

Bryant (1996) argues that Gelman’s criteria are too weak to
test the presence of the concept of number; knowing the counting
principles is not the same as having the concept of number. For
Piaget, and for Bryant, both cardinality and ordinality are essential
to the concept of number. Cardinality is the basis for judging
two sets to be equally numerous. Ordinality allows children to
conclude that a set of cardinality 4 is bigger than a set of
cardinality 3, and is hence bigger than a set of cardinality 2. Thus
2, 3 and 4 are not just number words which appear in a fixed
order, but indicate relative sizes. In Bryant’s view, Gelman does
not consider these issues to be central. For Gelman, knowing
the principle of cardinality is merely to recognise that the last
number counted is a property of the set as a whole. The Piagetian
criteria say that the child must know more, that two sets having
the same cardinality are equal in number and vice versa. Some
children who have a stable knowledge of the counting principles
in fact fail to reach this conclusion about equal sets. Greco (1962,
cited in Bryant 1996) found that children who correctly counted
two rows of objects and said that each row contained five objects,
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still judged one of the rows to be more numerous on the basis
of length cues. In another experiment, Sophian (1988, cited in
Bryant 1996) asked children to judge whether a puppet who had
been given a task requiring counting was doing the right thing.
Sometimes the puppet was asked to find how many objects were
in front of it altogether and sometimes it was asked to compare
two sets. Younger children failed to notice that the puppet made
mistakes, especially when it counted all the objects when it was
asked to compare two sets. Thus, although these children were
able to count, in their case counting did not seem to be related
to quantity. Thus we have a result that seems to go against
Gelman’s view that children fail number conservation tasks
because their lack of counting skills prevents them from applying
counting to judgments about numerosity.

Does this mean support for Piaget’s view then? Do these
children fail the number conservation tasks because they have
no idea of one-to-one correspondence, or if they do, they do not
link it to quantity? In an interesting experiment, Frydman and
Bryant (1988, cited in Bryant 1996) had children apply one-to-
one correspondence in a sharing situation. Children are familiar
with the ‘one for you’, ‘one for me’ schema for sharing equally,
which is a temporal version of one-to-one correspondence. The
question that Frydman and Bryant asked was whether children
apply this schema mechanically, without appreciating its essen-
tial link with quantity. The children had to distribute ‘chocolates’
(blocks) to two recipients, one of whom accepted only singles,
that is, single blocks, while the other accepted only doubles, that
is, double blocks. While a majority of the five-year-olds com-
pensated while distributing the blocks so that both recipients
received an equal number of chocolates, most four-year-olds
failed to make an adjustment and gave one of the recipients twice
the number that the other received. In a subsequent trial, colour
cues were introduced by making the double block from blocks
of two different colours, and having the single blocks also of
the same colours. In this case, the four-year-olds not only made
the required adjustment, but also carried over what they learnt
and performed much better in subsequent tasks using double
blocks of only one colour.

From a strictly Piagetian point of view, the finding that four-
year-old children are indeed aware of quantity and can learn to
apply it flexibly in simple sharing situations is surprising. Piaget
believed that a child must pass from the pre-operational to the
concrete operational stage, which happens typically around six
years of age, for a child to acquire the concept of number. To
put it somewhat circularly, number is what is conserved when
a discrete set is transformed spatially or in other ways that leaves
the number invariant. To acquire the concept of number is to
realise that certain transformations are irrelevant to the cardinality
of a set. Piaget thought that a child can do so only when she
or he is able to mentally reverse or invert the perceived trans-
formation. Thus when we make a row of objects longer, the child
imagines the row being restored to its original length and realises
that as a con-sequence the number does not change. This mental
reversibility of the perceived operation is a characteristic of the
child in the operational stage and, according to Piaget, is beyond
the abilities of the pre-operational child.

Does this imply that a pre-operational child has no understand-
ing whatsoever of the size of a discrete set, its numerosity? This
appears unlikely in the light of the many studies that have been
done in the past few decades on infants’ perception of numerosities
and of the perception of numerosity by animals, including the

higher primates [Dahaene et al 1997]. Rats have been trained
to discriminate numerosities of both visual (flashes) and auditory
(tones) stimuli. Further, rats trained on only one kind of stimuli,
either visual or auditory, spontaneously generalise and extract
numerosity information from stimuli presented in the alternate
mode. Pigeons have been trained to discriminate (30 per cent
errors) between 45 and 50 pecks, although the ability to detect
differences of five pecks is better for smaller numbers. Monkeys
and chimpanzees cannot only discriminate different numerosities,
but can also recognise and use the Arabic numerals for numbers
from 1 to 9 and perform simple addition [Carey 2001].

Studies on infants’ cognition of numerosities have shown that
very young infants, even neonates, can discriminate between sets
of one, two and three objects. Such studies typically follow the
habituation-dishabituation experimental paradigm. Infants are
exposed repeatedly to pictures showing, say, two objects varying in
type, size and position till they look at these pictures for relatively
constant lengths of time (habituation). They are then shown a
picture of a different number of objects, say, three objects. Typically
infants look longer at such pictures, and the difference in time is
statistically significant, suggesting that they can discriminate the
new picture from the ones that they have habituated to. Applying a
similar paradigm Wynn (1992) showed that infants can also anti-
cipate the results of adding or subtracting small numbers (1 +
1 or 2 – 1). In her experiment, infants were first shown an object
in front of which a screen was then placed. Another object was
moved behind the screen as the child looked on. When the screen
was subsequently removed, infants looked longer at the ‘impos-
sible’ outcomes of three objects or one object, in comparison
to the ‘expected’ outcome of two objects. These experiments have
been replicated and also controlled for various factors by other
studies and do suggest that infants can discriminate the numerosities
of small sets. As infants grow in the first year, their abilities
expand allowing them to deal with sets up to about four objects.

How does one reconcile these various findings? From very early
on, infants appear to be able to distinguish the numerosity of
a set from other properties. Very young children show awareness
of the how-to-count principles. But most children fail the number
conservation tasks until they are about six years of age. One way
to interpret these findings is to say that children have a basic
ability to perceive numerosity that is probably innate. In the first
few years of childhood, children learn the number sign system
that has been developed by human beings over centuries. In doing
so, they respect the principles underlying counting, probably
drawing on their innate understanding of numerosity. But it is
only when they become skilled in counting that they apply the
concept of number to make judgments about numerosity. In other
words, what the growing child achieves is the coordination of
a culturally developed sign system with an intuitive perceptual
schema for numerosity.

Piaget outlined a theory of how the growing child, starting from
virtually no innate cognitive abilities, acquires the structured
knowledge characteristic of the adult. Recent studies on infant and
animal cognition have shown that the infant’s mind is not the ‘tabula
rasa’ that Piaget thought it was. In the domains of language,
physical objects (naive physics), interaction with other humans
(naive psychology), number and even with regard to living things
(naive biology) infants seem to possess domain-specific innate
structures of knowledge. Piaget also provided a detailed account
of the stages and sub-stages that a child had to pass through in
acquiring more complex structures of knowledge. These stages
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were elaborated primarily in terms of the developing logico-
mathematical structures, which Piaget thought underlies cogni-
tion in every domain. His theory was therefore domain general.
Efforts have been made to elaborate Piaget’s stage theory and
the succession of structures and to develop testable hypotheses
on their basis. Experiments, however, have not confirmed many
of Piaget’s specific ideas on the sequence of development [Gelman
2000]. Indeed, it is not clear if there is a well-defined sequence
that all or even most children follow. However, Piaget’s discovery
that the child’s understanding is radically different from an
adult’s and many of Piaget’s specific characterisations of these
differences have been confirmed by subsequent research.

To acquire a stable conceptual structure in a given domain,
several discrete pieces of knowledge must be brought into
coordination with one another. In other words, the child must
construct a coherent structure from the experiences that she has
had, or from the instruction that she has been given. The per-
spective of constructivism, that the child is an active constructor
of knowledge, not a passive recipient, is one of Piaget’s enduring
contributions to both psychology and to education.

In the case of the concept of number, and also in other domains,
constructing knowledge may involve co-ordinating an artificial,
culturally developed symbolic system with an intuitive or innate
base of rudimentary concepts. The sign system for numbers that
children learn is the decimal positional system with place value.
It is not an exaggeration to say that virtually all of the arithmetic
done in primary school, till around class five, involves the mastery
of the convention of the decimal system and in addition the
convention for rational numbers. In comparison, there is very
little in the primary school of arithmetic proper, that is, the
properties of numbers as such. Let us briefly go over what is
involved in the learning of school arithmetic, which mostly
involves mastery of the conventions of the decimal system.

Number Operations

After the first few count words, children learn the generative
rules of the number system that allows them to count larger and
larger numbers. The counting numbers use the decimal structure
and children need to learn its generative rules. The Indo-European
family of languages have many quirks in the decade structure
of the counting numbers – the ‘teens’ in English, the reversal
of order in the two-digit number words and the words for 19,
29 ... in Hindi and Marathi. Children learning in these languages
find these oddities a stumbling block in the early years of
schooling. Although they eventually master the generative rules
and the counting structure, the difficulty that they face initially
can hamper their learning of the rules and procedures for the
basic operations. The convention of the number system is then
brought in coordination with the basic understanding of the
conservation of quantity and the properties of addition and
subtraction. Next, a sizeable knowledge base of addition and
subtraction facts is learnt. In building these facts and in extending
their capability in addition and subtraction, children bring to bear
their understanding of the conventional aspects of the number
system and the structure of the operations to develop flexible
procedures to add and subtract. Of course, children develop such
a flexible operational sense only when they have the opportunity
to do so. Many schools do not emphasise ‘mental mathematics’.
Exercises in mental computation, where children are encouraged
to solve problems in different ways, are extremely important in

building sound conceptual knowledge and confidence in using
numbers. It is important to realise that explicitly teaching children
procedures for mental computations is of limited value. As
children build up this conceptual base, their skills add up to an
impressive achievement and many children attain these levels
with apparently little explicit instruction.

Evidence for this claim is obtained from the studies of ‘street
mathematics’. It is not uncommon to find many adults employing
non-standard procedures for computation during commercial
transactions. These procedures are often employed flexibly,
reflecting a robust conceptual understanding of the basic opera-
tions. Such knowledge is found not only among adults but also
among children. Studies conducted with children involved in
street vending in Brazil showed them to be using flexible mental
calculation strategies to find the cost of multiple items. When
problems involving the same numbers and operations were posed
in the formal style of school word problems, the same children
made repeated errors. Clearly, the children were constructing
their knowledge of ‘street mathematics’ independent of the school
[Carraher et al 1980].

It seems inconsistent then that many children do so poorly at
certain procedures, for example, the subtraction algorithm or the
division algorithm. One must note that learning the algorithm
for the basic operations is quite different from acquiring an
operational sense. The algorithms are simplified procedures,
which reduce the operations to steps calling for operations on
single-digit numbers. The decimal positional notation makes this
reduction possible. Of course, special attention must be paid
when the single-digit operations are non-standard, for example,
when subtracting a larger digit from a smaller digit, or when zero
is involved. It is here that many children make errors. Many of
them mistakenly assume that they are dealing with only single
digit numbers. Evidently, for these children, the algorithm is
completely dissociated from their conceptual understanding.

An interesting study in the late 1970s by Brown and VanLehn
(1980) attempted to build, using a computer programme, a cog-
nitive model of the erroneous knowledge of the subtraction
procedure that many students have. Many of the errors that
children made could be reconstructed from purely procedural
considerations. Children who did not remember the procedure
for special cases, such as when you need to borrow from a zero
in the next place, made a ‘repair’ by adopting an alternative
procedure, leading to the errors observed. The model, which
accounted for a large percentage of the errors made by students,
is further evidence of the dissociation between procedural and
conceptual knowledge.

The fact that such dissociation is widespread has prompted
some researchers to emphasise the construction by children of
their own procedures for addition and subtraction and to withhold
the teaching of standard algorithms till children construct such
procedures [Fuson et al 1997]. It is not clear whether this approach
will be acceptable to the wider community of teachers and
curriculum designers. After all, the algorithms taught at school
are simple and general and hence ex-tremely powerful. One needs
to devote sufficient time to allow children to develop a mastery of
these algorithms. Of late, there is a growing appreciation of how
a conceptual understanding of the place value system and flexible
procedures for the operations can be combined with teaching the
standard algorithm to enhance students’ understanding [Ma 1999].

To sum up, children eventually acquire a mastery of the counting
numbers and the operations of addition and subtraction. Not much



Economic and Political Weekly August 30, 2003 3699

more than just exposure to the culturally developed number sign
system is required for this to happen. Indeed, not every child
who grows up to be an adult may be able to carry out the school
procedures of addition and subtraction without making errors.
But their knowledge of these operations is sufficiently robust
and flexible for them to evolve their own strategies of solving
problems in situations that matter to them. The research con-
nected with beginning mathematics has led some researchers to
conclude that there is an innate basis for the development of
knowledge about numbers and the basic operations of addition
and subtraction [Gelman 2000]. What then of the mathematics
that lies beyond this basic core?

Beyond Natural Numbers

The topics in school mathematics that lie beyond natural
numbers and the operations of addition and subtraction are rarely
learnt spontaneously by children as they grow into adulthood.
These are the topics that pose hurdles to children in school.
Gelman (2000) and others suggest that a robust knowledge of
natural numbers can, in fact, interfere with the learning of other
topics, such as, for example, rational numbers. At least some of
the difficulties that children face in various topics of school
mathematics are due precisely to their success in understanding
and internalising the structure of the counting numbers and the
operations of addition and subtraction.

The difficulties that children have with rational numbers il-
lustrates this point.3 The notation for a rational number is in-
troduced in primary school through the concept of a fraction.
Some of the most common errors that children make when dealing
with fractions and decimal numbers are due to the erroneous
extension of concepts from their knowledge of whole numbers.
For example, 1/8 is thought to be bigger than 1/7, and 8.19 is
thought to be bigger than 8.7. Children have a great difficulty
in understanding the magnitude of a fraction or of a decimal
fraction. It has been suggested that in order to understand frac-
tions, children need to develop the schema of subitising or
flexibly changing the unit used to measure out a quantity. For
example, a collection of 12 can be seen in different ways, as
12 ones, or as 6 twos, or as 4 threes and so on. This schema
also forms the basis for what is called multiplicative thinking,
where it is important to understand the multiplicative relation
between numbers, that is, their ratio. We use fractions in order
to quantify a magnitude that is not a whole number but lies
between whole numbers. In specifying a fraction, as we will
elaborate below, we choose a unit that is smaller than one to
measure out the magnitude. For decimal fractions the smaller
units are always powers of 1/10.

Thus if we are measuring a length that is more than 6 units
and less than 7 units, and we wish to assign a number to the
length, we proceed by dividing the interval between 6 and 7 into
10 equal parts, assigning the numbers 6.1, 6.2, 6.3, ... to the
divisions in the interval. If this is not accurate enough, say, we
find that the length is between 6.2 and 6.3, then we divide the
interval between 6.2 and 6.3 into ten equal parts, marking the
divisions as 6.21, 6.22, 6.23 .... This procedure can be carried
out indefinitely to any accuracy that we desire, generating suc-
cessive digits after the decimal point.

The case of ordinary fractions is more complicated than that
of decimal fractions because the intervals between whole num-
bers are divided into a varying number of equal parts: into halves,

thirds, fourths and so on. Each way of dividing produces a
different unit – the so-called unit fractions 1/2, 1/3, 1/4 ... and
so on. The unit fractions can be ordered, and as the denominator
increases, the unit fraction becomes smaller. Every fraction is
either a unit fraction or is composed of unit fractions. For
example, 3/5 or three-fifths, is equal to 1/5 + 1/5 + 1/5. If children
are to develop a sense of the magnitude of a fraction they need
to grasp the notion of a unit fraction thoroughly and understand
the relation between a given fraction and the unit fraction from
which it is composed.4 To take a simple example, if we were
to compare 3/5 and 3/7, we see that they are both composite
fractions and hence composed from unit fractions. The fraction
3/5 is made up of three-fifths or three 1/5s, while 3/7 is three-
sevenths or three 1/7s. Since 1/7 is a smaller fraction than 1/
5, we conclude that 3/7 is smaller than 3/5. In other words, a
fraction denotes a relation between itself and the unit interval,
with the unit interval being divided into a specified number of
equal parts. To grasp the relation between two fractions with
different denominators requires one to see that the same unit
interval can be divided in different ways into sub-units. This is
analogous to what is involved when we subitise a collection of
wholes, that is, when we break it in different ways using units
of different sizes.

A part of the difficulty of the concept of the rational number
stems from the fact that we use it in a variety of situations from
which it is virtually impossible to extract the common features.
We introduce fractions in the early classes, as representing part-
whole relations using simple shapes such as rectangles and circles
as illustrations. However, many of the basic properties of frac-
tions – order relations of fractions, the equivalent fractions,
addition and subtraction of fractions – are much clearer when
we think of the fraction as a number with a definite position on
the number line. As children build these concepts, we require
them to simultaneously extend the application of the part-whole
relationship to collections and magnitudes, for example, when
we take 1/3 of 15. Fractions function as unary operators in this
context. Rational numbers are also used to represent ratios
of magnitudes. When we say that two lengths are in the ratio
p/q, we mean that there is a unit length such that one length is
‘p’ times the unit length, while the other length is ‘q’ times the
unit length. Apart from these contexts, we use the rational number
notation as a convenient representation of the quotient in a
division operation. For example, if 13 equal-sized rotis are shared
equally among 20 children, then each child’s share is precisely
13/20 of a roti. Or, if the cost of 12 pens is Rs 450, then each
pen costs Rs 450/12. Children encounter all of these situations
in school mathematics. One suspects that even children who
successfully manage the application of rational numbers in all
these situations have conveniently ignored doubts about what
is common to these situations.

It is clear that children who have mastered the use of natural
numbers must learn a whole new way of using numbers when
dealing with fractions. Fractions do not have any order that
reflects the size of the fraction. In fact, given any two fractions,
one can always find a fraction that lies between them. It follows
that unlike in the case of natural numbers, there is no fraction
‘next’ to a given fraction. Besides these critical differences, a
child has to learn that the numbers in the fraction can completely
mislead one, if they are thought in analogy with whole numbers.
The use of large numbers in the numerator or denominator has
no simple consequence for the size of a fraction. Thus 421/843
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is just a little smaller than 1/2, and the fraction that is half way
between 3/5 and 4/5 is 7/10. Besides these relationships, a child
has to learn that there are any number of ways in which the same
fraction can be written, using different whole numbers, for
example 1/3, 7/21, 19/57,  ... Not only that, every whole number can
be written as a fraction, and in any number of ways; for example,
the number 2 can be written as 4/2, 34/17, 842/421, ...

To summarise, two of the major sources of difficulty with
rational numbers are the stark notational and conceptual differ-
ences of the rational number in comparison to the integers and
the wide range of applications of the rational number. The
notation for a rational number uses whole numbers, whose
decimal structure children have managed to learn over the first
few years of school. But the interpretation of the whole numbers
used in the rational number notation is radically different. Further,
rational numbers are used to denote part-whole relationships, to
specify a part of a given collection or a magnitude, to denote ratios
between two magnitudes, and as a convenient way of writing
the quotient in a division operation. The power of the notation
for a rational number arises from this wide range of applications.
Children typically learn these various connotations of the rational
number in disconnected fragments over a period of time. It is
hardly surprising that many of them do not acquire even a basic
understanding of the rational number. Indeed, what is surprising
is that a few students do manage to use the notation correctly
and confidently. Given the disconnected approach to rational
numbers in most curricula, this is suggestive of the spontaneous
coordination of schema acquired separately in different contexts.
Rational numbers remain one of the most difficult areas of school
mathematics. The pedagogic problem of how to integrate con-
ceptual and procedural knowledge in this area, and how to
facilitate the coordination of the different aspects of rational
numbers in the learner has not really been solved satisfactorily.

School Algebra

We have seen how in the case of fractions, children need to
learn a notation that is both sophisticated and very different from
the one that they are familiar with for whole numbers. In algebra,
they need to develop an entirely new way of looking at operations.
Here the power of notation is raised to a new level, allowing
one to solve equations, express general identities and explore
functional relationships. The new language with its conventions
and the higher level of abstraction pose many problems for
students. Several research studies on students’ understanding of
algebra have been done in the past few decades and have iden-
tified many points where students have difficulty.

Such studies have attempted to build a model of students’
thinking in algebra that accounts for the observed errors that
students make. The early work in this area was done within the
Piagetian framework. Collis (1974, cited in Kieran 1992) ob-
served that children younger than 10 years of age had trouble
with statements of the form 4 + 5 = 3 + 6. He inferred that students
needed to put the expressions on either side of the ‘=’ sign into
a closed form in order to make sense of this equation; that is,
they needed to explicitly write down the statement 4 + 5 = 9
to make the transition from the left hand side (LHS) to the right
hand side (RHS). He attributed this to the children being in
Piaget’s concrete operational stage. Children older than 10 or
11 years cross over into the formal operational stage, when they
can perceive formal relationships among symbolic expressions.

In this stage, they do not need to replace an unclosed expression
with a closed form in order to perceive equivalences.

Subsequent research has moved out of the Piagetian frame-
work, which has proved inadequate to understand the nature of
students’ thinking in algebra and the course of its development.
It is not possible to correlate the stages in the development of
students’ algebraic thinking with age-related general cognitive
development. Indeed, many of the errors that students make in
algebra persist in later years, and even adults have considerable
difficulty with algebra. In a revealing study, Clement et al (1981)
asked college undergraduate students to write down an equation
for the statement, ‘there are six times as many students as
professors’ using ‘S’ and ‘P’ for the number of students and
professors respectively. A surprisingly large number of students
wrote the equation as 6S = P, instead of the correct equation
6P = S. The students who made the error apparently represented
the syntax of the natural language sentence in the equation. We
will see below that the failure to view letters as numbers and the
failure to perceive the numerical relationships in expressions and
equations is one of the major causes of errors in algebra. Clearly,
the difficulty students have with algebra persists even when they
have acquired the cognitive ability to deal with abstract objects.

A perspective that examines how algebra is structured as a
symbolic system is useful in understanding algebra from the
perspective of teaching and learning. The symbolic structure of
school algebra can be analysed at three levels: the atomic level
(analogous to words in the natural language), the level of ex-
pressions (analogous to phrases) and the level of equations
(analogous to sentences). The atomic symbols are the numerals,
the variables or the literal numbers and the signs for the opera-
tions. Each symbol has a clear referent: a number including an
unknown or a generalised number, or an operation. In addition
to these there are the grouping symbols – various kinds of brackets
– which can be thought to have a syntactic function. At the next
level, these atomic symbols are combined to form expressions,
which have multiple semantic values. Examples of simple ex-
pressions are x + 3, 4y. The atomic symbols in the first expression
are ‘x’, ‘+’ and ‘3’; ‘x’ is a variable, ‘+’ the operation sign and
‘3’ a numeral. More complex expressions can involve several
terms: 3x2 y + y(z – x) – z(2y2 – x).

The fact that an expression can have multiple meanings is
pivotal to algebra and is both the source of the power of algebra
and the source of difficulty for those learning it. For example,
the expression x +3 stands in the first place for a number, perhaps
an unknown or a generalised number. It also stands for the result
of the operation of adding 3 to x, that is, the sum of x and 3.
Further, it provides information about the number that is denoted:
the number is 3 more than x, or x more than 3. To illustrate these
differences in meaning, consider the arithmetic expressions 5+3
and 7 + 1. Both denote the same number, namely. 8, but include
different descriptions of the number. The first expression de-
scribes the number as ‘3 more than 5’ or ‘5 more than 3’, while
the second describes it as ‘1 more than 7’ or ’7 more than 1’.
Alternatively, one may think of the expressions as meaning
respectively ‘the sum of 5 and 3’ and ‘the sum of 7 and 1’. The
Fregean distinction between sense and reference applies quite
nicely to arithmetic or algebraic expressions.

The next symbolic level is that of equations. These are analo-
gous to sentences. Equations are full-fledged statements that have
a truth value. An equation asserts that the expression on the LHS
of the equation is the same as the number denoted by the
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expression on the RHS. As an illustration, first let us consider
examples of arithmetic equations: 5 + 3 = 7 + 1 has the truth
value ‘true’ since the LHS and the RHS expressions denote the
same number, while the equation 6 + 2 = 7 + 3 has the truth
value ‘false’. Algebraic equations are more akin to truth func-
tions, they may be true for some values of the variables and false
for other values. For example, the equation x + 3 = 9 has truth
value ‘true’ for x = 6 and ‘false’ for all other values of x. The
set of values of the variable that make the equation true is called
its solution set. An identity is an equation that is true for all values
of the variable in a domain. Thus the equation (x + 3)2 = x2 +
6x + 9 is true for all values of x, and is therefore an identity.

The difficulties that students have with algebra may now be
analysed using this framework. At the level of the variable,
students appear to move through different stages as they progress
in the learning of algebra [Booth 1984]. Keeping these stages
in mind is useful for purposes of understanding students’ errors
and planning instruction. However, there is no necessity about
these stages or the sequence in which they appear. At first,
students may simply reject the variable that ‘suddenly’ appears
in the arithmetic expressions that they have been dealing with.
This may take the form of ignoring the variable altogether, or
simply replacing it arbitrarily with a number. Students at the next
stage interpret the variable as an abbreviation for an object, (for
example, ‘6a’ may be thought to mean ‘6 apples’) or as an object
in its own right and not a number. In the next stage, students
correctly interpret the variable to be a number, but think of it
as taking a specific value, often substituting a number that they
think is appropriate. Some students even assign values based on
alphabetic order: a = 1, b = 2, and so on. This is thought to be
the result of an exposure to certain kinds of puzzles. At the next
stage, students are ready to accept the correct notion that a variable
can stand for multiple values or a range of values or can even
represent a generalised number that can take any value. Here too
students appear to accept this idea only gradually, and have
difficulty coming to terms with the possibility that in the expres-
sion 3a +b, a and b can both take the same value.

One can also identify the broad stages of the development of
students’ understanding of the next level of symbolism, namely,
expressions. Understanding the structure and function of alge-
braic expressions forms the core of algebraic thinking. So the
stages that students pass through at this level are critical for the
learning of algebra. Again, one must note that there is no necessity
associated with these stages. The stages listed below have been
adapted from Sfard and Linchevski (1994).
– Expressions are viewed as just a string of symbols. This stage
is correlated with a lack of acceptance of a variable or a letter
in the expression.
– Expressions are thought to be an abbreviation of a set of
instructions for carrying out a computational process. Thus the
expression 2x + 7 is viewed as an abbreviation for a set of
instructions: take a number, multiply it by 2 and add 7. At this
stage, students feel a compelling need to ‘close’ the expression
and replace it with a number, or a ‘closed’ form. This is thought
to be the explanation for the widespread concatenation error:
substituting x + 3 with x3 or 3x. Presumably, students view the ex-
pression as an instruction to add 3 to x and write down the answer.
– Expressions are understood as standing for the result of a set
of operations, that is, for a number. At this stage, students may
be able to solve simple equations with the variable on only one
side of the ‘=’ sign by inverting the operations in the expression

in the reverse order. For example, they may find the unknown
in the equation 2x +5 = 17 by first subtracting 5 from 17 and
then dividing the result by 2.
– Unclosed expressions are accepted and students can operate
with them. Thus students may add, subtract or multiply expres-
sions and simplify them in the course of solving a problem. They
may also be able to interpret the meaning of simple expressions
as discussed above.
– Different expressions can be compared and relations between
expressions such as equivalence, functional relations can be
understood. This is a mature stage of algebraic understanding,
when students are able to understand the concept of a function.

A similar stagewise analysis may be proffered for students’
understanding of the next symbolic level: that of equations. Here
one of the critical transitions is from viewing the ‘=’ sign as a
signal ‘to do something and produce an answer’, to viewing it
as signifying that the two numbers obtained on both sides are
equal. Presumably, children in primary school encounter many
questions of the type 7 + 6 = ?, where they need to write down
an answer after the ‘=’ sign. These experiences give rise to the
interpretation of the ‘=’ sign as a signal to produce and answer.
Such children may initially be puzzled by questions like ? = 5
+ 4 or 3 + 6 = 4 +?, feeling that the question has been framed
wrongly. However, exposure to exercises that specifically require
them to check for the equality of numbers obtained after carrying
out operations on both sides is usually sufficient for children
to overcome this problem. A later stage in the development of
students’ understanding of equations involves the appreciation
of the difference between an equation and an identity. Still later
is the appreciation of the rules for solving equations involving
surds and polynomials.

Of these three symbolic levels, the atomic symbols, the ex-
pression and the equation, the critical level is that of the expres-
sion. Indeed, many researchers agree that this marks the differ-
ence between the arithmetic and the algebraic way of thinking.
The crucial difference between algebra and arithmetic is not the
presence of the ‘letter’ but a difference in the way in which
unclosed expressions are interpreted and handled. Filloy and
Rojano (1985, cited in Herscovics and Linchevski 1996) speak
of a didactic cut between arithmetic and algebra. They found
that students who could solve linear equations of the type
3x + 4 = 19, were not able to solve equations where the variable
appeared on both sides of the ‘=’ sign, as in, for example, the
equation 5x + 2 = 2x + 11. They thought that such students were
on the arithmetic side of the didactic cut, essentially because they
did not view expressions as denoting a number as well as containing
compositional information about the number. Sfard and Linchevski
(1994) characterise the algebraic way of thinking as understand-
ing the process-product duality of the algebraic expression: that
it stands for both the process involving a set of operations and
the number which is the product of that process. Several other
researchers have noted the discomfort of students in operation
with unclosed expressions.

The power of algebra stems from the fact that an unknown
or generalised number can be represented, operated with and the
result of the operation represented as an expression. The expres-
sion can again be operated upon to yield further expressions. This
is nicely illustrated in the many versions of the ‘guess the number’
game popular with children: think of a number, add 2 to it,
multiply the sum by 3. Now subtract the original number and
divide the result by 2. Again subtract the original number. The
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answer is 3. Writing the operations down in the form of an
expression makes this obvious. Let the number be x. So we have,

3(x + 2) – x 2x + 6
——––––––– – x = ———— – x = 3

2 2

The ‘guess the number’ game involves the solution of equa-
tions, usually linear equations. In an equation, the letter stands
for an unknown number. Other contexts require the interpretation
of the letter as a generalised number. This representation turns
algebra into a powerful tool for the discovery of patterns and
for justifying and proving propositions. Consider the statement
that when we add one to the product of consecutive odd numbers
we always get a perfect square. It is quite simple to justify this
using algebra. We let the two odd numbers be 2n – 1 and 2n +1.
Their product is 4n2 – 1. Adding 1 gives 4n2 which is a perfect
square. In the process of justifying, we realise that the statement
is true for both consecutive odd and even numbers which can
simply be written as n – 1 and n + 1.

As the learning of algebra progresses, students need to acquire
greater and greater facility with expressions. Even in the proof
of the statement in the previous paragraph, it is important to
choose an appropriate form of the expressions for consecutive
numbers. This requires a familiarity with expressions, a sound
understanding of the relations between expressions and an ability
to estimate the result of operating with expressions. The prelude to
all this is, of course, understanding what expressions are all about.

We have seen earlier that many children acquire flexibility with
whole numbers and basic operations with minimal contribution
from external instruction. This process involves coordination of
the culturally developed sign system for number with innate
cognitive structures that facilitate the perception of quantity. An
analogous process of the coordination of a symbolic system with
a base of cognitive capacity happens in case of algebra too. The
base here is not an innate cognitive capacity, but rather the flexible
understanding of numbers and operations that children acquire
at an earlier stage. Hence mathematics has a hierarchical structure
from the viewpoint of teaching and learning, and not only from
the logical point of view. The signs and symbols that are mastered
earlier function like semi-concrete objects for the development
of the next hierarchical level. Thus numbers function as semi-
concrete objects for the development of algebra. Indeed for many
children, by the time they begin to learn algebra, numbers have
already begun to acquire the status of concrete objects. It is this
base that needs to be built upon in acquiring an understanding
of algebraic expressions.

To conclude, the learning of school mathematics does not
require any special ability beyond the basic cognitive capacities
that most children and adults possess. What is required is often
the coordination of a culturally developed sign system with an
intuitive base. This coordination is a process that happens naturally
and spontaneously if children are given opportunities and situ-
ations that they find motivating. The essence of the constructivist
approach is that such coordination cannot be forced through
instruction although it can be facilitated by a careful choice of
learning tasks. There is evidence that this process can happen
with whole numbers and basic operations relatively indepen-
dently of instruction. But beyond this basic core, children need
a teaching-learning setting in which they have opportunities to
master specific bits of knowledge and to co-ordinate these frag-
ments. As long as instruction focuses on narrow learning out-
comes and treats topics in a fragmentary manner, students will

not have sufficient opportunities to achieve the coordination of
concepts.
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Notes
1 Unfortunately, the obsession with high-stakes board examinations, and

the attendant social pressures have virtually reduced problem solving to
merely recalling solutions to problems solved previously, often by somebody
else – a teacher or a textbook author. If the culture of problem solving
is to flourish, activities located on the fringe of mainstream education
like olympiads and olympiad-like competitions need to grow in number
and in coverage.

2 A ‘schema’ for Piaget is an internal representation of a pattern of action.
It is essential for Piagetian theory that schemas are applied beyond the
situation in which they first appear (assimilation), that schemas change
while being applied to new situations (accommodation) and that lower-
level schemas are coordinated/integrated to form more complex schemas.
For example, in infancy, the schema for reaching out and grasping is co-
ordinated with the schema for purposeful looking to achieve hand-eye
coordination [Piaget and Inhelder 1966].

3 Rational numbers are numbers which can be written in the form p/q, where
p and q are integers and q is not zero. The concept of a rational number
is more general than that of a fraction. The term fraction is usually restricted
to the use of the rational number to specify a part-whole relation or a
number that lies between whole numbers.

4 This is one of the omissions that is common in many textbooks prescribed
for primary schools. Very few textbooks give the concept of a unit fraction
the emphasis that it ought to have.
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