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Introduction 
Several researchers have attempted a characterisation of algebraic thinking. A 
frequently cited framework proposed by Kaput (1998) identifies five forms of 
algebraic thinking: generalizing and formalizing, manipulation of formalism, study of 
abstract systems and structures, study of functions and co-variation, and modeling. In 
this paper, I deal with the issue of how the development of  the second of these five 
forms –  ‘algebra as the syntactically guided manipulation of formalisms’ – may be 
supported. My focus is on understanding the initial forms of students’ reasoning with 
symbolic expressions and on how instructional practices could shape and strengthen 
these initial steps in the development of the symbolic mathematical ability. 
Specifically, I highlight the importance of including an emphasis on syntactic 
understanding in beginning algebra instruction and suggest ways in which semantic 
and syntactic understanding may be mutually supported. 

 
The first section of the paper will include analyses of examples of students’ reasoning 
in the primary and middle grades where symbolic expressions are involved. I follow 
several authors in distinguishing between two modes of reasoning involving symbolic 
expressions, for which I shall use the names ‘referential’ and ‘syntactic-structural’. 
The referential mode of symbolic reasoning is founded on ‘number sense’ or 
‘operational sense’, that is, an understanding of the relation between numbers and of 
the effects of arithmetic operations. In referential reasoning, the warrant for the 
judgements that subjects make and the justification for their actions is drawn from 
their knowledge about numbers and operations. The essential difference in the 
syntactic-structural mode of reasoning is that such warrant flows from the subjects’ 
knowledge of how to transform expressions and equations into other equivalent 
expressions and equations. Thus syntactic-structural reasoning goes beyond referential 
reasoning in requiring knowledge of the rules for transforming expressions and 
equations, and further, the notion that expressions can be derived from and substituted 
for other expressions.  

The distinction between referential and syntactic-structural thinking with regard 
to symbolic expressions is not new. Many readers would readily concede the 
distinction and agree that reasoning on the basis of syntactic-structural transformations 
is harder and develops later among students. Most would also agree with the fact that 
actual instances of reasoning involve a back-and-forth movement between the two 
modes (Kaput, 1998; Arcavi, 1994). So what I shall argue for is the importance of this 
distinction in planning and designing teaching interventions, that is, the importance of 
allowing for and supporting both modes of reasoning during instruction. Syntactic 
considerations play a part even in the elementary instances of reasoning with 
expressions. Without taking due account of the syntactic side of reasoning, students’ 
reasoning processes become impoverished and do not run their full course.  

An act of reasoning may be classified as such only if sufficient warrant exists for 
each step of the reasoning process, both in the logical and in the psychological sense. 
When the reasoning involves symbolic expressions, for the referential moments in the 
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reasoning process, students’ experiences of arithmetic provides the necessary warrant. 
The warrant for the syntactic-structural moments in their reasoning must be built up 
and secured through an extended process of learning that is different from the 
experience they have gained in arithmetic. The nature of this process has been 
inadequately conceptualized. It stands to reason that the first steps in acquiring 
capability in syntactic thinking must use knowledge of arithmetic as a springboard. 
However, what these first steps would be, what the nature of the contribution of 
arithmetic knowledge is, what additional cognitive processes are at play are questions 
that need to be explored. Hence my interest is not so much on syntactic aspects of 
mature or expert reasoning with symbolic expressions, as on the preliminary forms of 
syntactic reasoning, on how these may provide a foundation for the development of 
the syntactic-structural sense, and on how these in turn, draw upon students’ 
knowledge about numbers and operations. 
 
In the second section of the paper, I discuss some teaching intervention studies in 
algebra that have focused on the structure of expressions. Many of these studies 
receive their impulse from the research on students’ errors and difficulties in algebra. 
Most of these studies have attempted to build on students’ knowledge of arithmetic. 
However, recently doubts have been raised about whether the approach to teaching 
algebra through arithmetic is viable (Linchevski and Livneh, 1999). Kirshner (2001) 
takes issue with the perspective that syntactic algebra must follow and build on the 
basis offered by referential understanding. I revisit this issue and discuss an alternative 
to building the connection between arithmetic and syntactic algebra through a 
restructuring of naming practices. 
 
The third section of the paper outlines a structural approach to teaching arithmetic and 
algebraic expressions that is based on this alternative. Here I draw upon work done, in 
association with my colleagues, on developing the initial instructional materials of 
such an approach. The instructional materials and the principles embodied in the 
approach itself, have evolved over a few teaching cycles in out-of-school vacation 
programs conducted at the Homi Bhabha Centre for Science Education. The approach 
bears some resemblance to that proposed by Kirshner (2001). We concur with Bell’s 
(1995) recommendation of using a combination of ‘focused teaching’ of syntactic 
rules and of tasks requiring reasoning on the basis of arithmetic knowledge in order to 
build syntactic understanding. Reading this from a slightly different angle, we propose 
in our teaching approach, a combination of tasks requiring reasoning about 
expressions and tasks requiring reasoning with expressions as a way of building 
students’ abilities with symbolic expressions. We take a further step in the direction of 
a structural approach by proposing a set of naming practices for teaching arithmetic 
and algebraic expressions and by adding details that have emerged through our 
experience of teaching. 
 
In the final section I discuss some instances of reasoning by students in the context of 
comparing arithmetic expressions by attending to their structure. I include this in order 
to show the spontaneous tendency among students to extract rules at the syntactic level 
and to indicate how they take account of semantic constraints while extending and 
applying what are essentially syntactic rules. This is a preliminary analysis of 
phenomena observed in an ongoing teaching intervention research program, but I hope 
that the discussion will aid in a more adequate conceptualization of the relation 
between referential, meaning-extracting processes and the generation of procedural 
rules that guide action at an essentially syntactic level. 
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Reasoning involving symbolic expressions 
In this section, I discuss examples drawn from the research literature on algebra 
learning that involve students’ reasoning with symbols. The aim of the discussion is to 
show how syntactic-structural reasoning plays a critical role in reasoning with 
symbolic expressions. This aspect of reasoning is often underemphasized in 
discussions of students’ reasoning. The examples discussed will also serve to draw 
attention to important pedagogical principles that must be borne in mind while 
designing instruction aimed at fostering the understanding of symbolic expressions. 
 The first example that I will discuss is an instance of reasoning that involves 
symbols but not symbolic expressions. This will serve to highlight the difference 
between symbols that stand for objects, and symbols that stand for procepts (in the 
sense of Gray and Tall, 1994) where the reference is relatively opaque. The example is 
taken from Yackel (2002). First-graders in a teacher led classroom are discussing how 
to share a giant cookie (shown in the form of a circle) among four people. Josephina, a 
student, draws two lines to show how the cookie may be cut. The pieces of the cookie 
don’t look like fair shares to many children. One of them, Armon, walks up to the 
drawing and draws a little circle in a portion of the cookie. When the teacher looks 
puzzled, he asks the teacher to draw more circles in the different portions. The 
argument that Armon is trying to make to show that the portions are unequal is now 
clear to the teacher, and she completes the argument by discussing it together with 
Armon and the class (see figure 1). 
 
 
 
 
 
 
 
 

Figure 1: A rough sketch of Armon’s argument (Yackel, 2002) 

 
This wonderful example of reasoning by a young child belongs to the growing number 
of ‘happy stories’ (Kaput, 2004) about the capabilities of young children that recent 
studies have uncovered. The reasoning involved is sophisticated and shows that when 
the reference is clear, even young children can deploy symbols to reason and to 
communicate their reasoning to others. Such studies reinforce the view that students’ 
difficulties in learning algebra may be the result of not engaging their thinking during 
the teaching-learning process, rather than because of the limitations imposed by their 
stage of cognitive development or individual cognitive abilities. These findings propel 
one to look for ways of engaging students’ thinking and reasoning while learning 
difficult material including the handling of symbolic mathematics. 

In this example, although Armon imaginatively uses a drawing, which is indeed a 
kind of symbol, it is quite different from the kinds of symbolic reasoning that we wish 
to focus upon. Our concern is narrower: it is with symbolic expressions, that is, strings 
of symbols containing numerals, operation symbols, variables or letter numerals and 
grouping symbols. Armon’s reasoning involves the creation and use of symbols (small 
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circles) probably preceded by the creation and manipulation of mental images. These 
symbols and images however, have a more direct link with physical objects. The 
reference of the symbols is relatively transparent in comparison with the symbols that 
make up an expression. For this reason, we restrict our discussion to symbolic 
expressions. As one might expect, and as is attested by numerous studies, students face 
enormous difficulties in dealing with symbols where the reference is opaque.  

 
A second example that we will consider is a task from an instructional unit called 
‘building formulas’ for seventh-graders developed at the Freudenthal Institute (van 
Reeuwijk, 1997). The task belongs to the general category of tasks where students are 
required to find a pattern in a sequence and to express this in the form of a function or 
a ‘formula’. In the example, students are finding the relation between the length of a 
beam in the form of a truss composed of triangles (see figure 2) and the number of 
rods that are needed to build the beam. A recursive relation such as, ‘when the length 
increases by 1, the number of rods increases by 4’, is easier to find, but less useful, for 
finding the number of rods in very long beams, than a formula. The students, who are 
encouraged to find a general formula, come up with ‘different’ formulas such as 
 

3 × L + (L – 1) 

L + 2 × L + (L – 1) 

4 × L – 1 
 
(van Reeuwijk, 1997, p. 233. I have introduced the ‘×’ symbol in the expressions, 
while the article cited follows the standard algebraic convention of omitting it. Using 
brackets is also an important convention which needs to be secured over time. 
Assuming that students know how to use them in generating expressions, I have 
retained the brackets just as in the cited article.) Other similar examples are commonly 
encountered in teaching studies of algebra, where students are encouraged to find a 
pattern in a sequence of configurations and to express this in terms of a formula. The 
patterns include those made by matchsticks, dots or other geometrical shapes. I’ll now 
pursue a hypothetical extension of this activity that elicits further thinking and 
reasoning concerning these formulas. 

If a pattern finding task such as the above leads to the generation of different 
formulas, what would a group of students make of the formulas that are produced? 
They might wonder if all the formulas are correct. This could be done by checking the 
formulas one by one against specific cases where the length of the beam and the 
number of rods could be found from a diagram or from the recursive relation. A more 
sophisticated approach would be to verify by recomposing each formula, that is, by 
checking that it correctly represents a systematic method of counting the rods. For 
example, the formula 3 × L + (L – 1) would represent counting all the rods that make 
up the upright triangles, and then the rods joining the top vertices of these triangles 
(see figure 2).  
 Asking whether all the three formulas are correct is different from asking 
whether they are the same. Students who are unfamiliar with this game, may be 
puzzled by the latter question. In an obvious sense, the formulas are different. If the 
question is about whether they give the same output when the same number is 
substituted for L, the obvious way to answer the question would be to check by 
calculation. However, this would be catching the wrong end of the stick; the point is to 
see the equivalence of the formulas without having to compute with actual numbers. 
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The teacher may induce the students away from such inductive reasoning by 
challenging them, ‘Would you be able to tell me if the formulas are the same by just 
looking at them, without doing any calculation? If I were to just give you these 
formulas, without the diagrams or the problem, would you be able to say if they are 
the same without doing any calculation with numbers?’ 

To be able to see the relation between the expressions, the students will need to 
find parts of the expression that are common. The presence of the brackets may allow 
them to quickly identify the bracketed term (L – 1) as common to the first and second 
expressions.  Further, if their knowledge that multiplication precedes addition in the 
order of operations is in place and is recalled, they may see that in the second 
expression L is added to twice L, which is the same as three times L. This line of 
reasoning involves two moments – the first a structural moment – seeing that a part of 
the expression is common and second, an operational moment, seeing that a 
composition of two operations is the same as a third operation. Reasoning about the 
composition of operations in this manner may require a reified understanding of 
operations as both process and object, as has been pointed out for example, by Sfard 
(1991) and Gray and Tall (1994). We will follow Gray and Tall in referring to this 
understanding as ‘proceptual’. 

We see, however, that the syntactic conventions (the order of operations in this 
case) must be in place before such proceptual knowledge can be applied. This is even 
more so in the third expression or formula, where the bracketed term is absent. In 
comparing the first and the third expressions, the cue provided by the bracket is 
misleading, suggesting a detachment of the ‘×’ sign, and leads away from perceiving 
their equivalence of the two expressions. An intervening step in the reasoning must 
employ an understanding of syntax to break this cue, and then reason about the 
composition of operations. 

While the activity of finding a formula for a pattern is common and widely 
reported in the literature, the extension of this activity to consider the equivalence of 
the formulas generated is not so common. The extension involves an aspect of 
algebraic thinking that is different from the one involved in generating the formulas, 
but that is nevertheless equally important. More studies are required on this aspect of 
algebraic thinking to develop an understanding of how students progress with respect 
to symbolic reasoning. A study by Carrahers and Earnest (2003) of third graders 
reflecting on their solutions of the ‘guess my rule’ task – where input and output 
numbers are given and students are asked to guess the function – shows the enormous 
difficulty they have in even comprehending the equivalence of expressions like 2 × x 
and x + x. While this may be explained by claiming that such young students are yet to 
develop a proceptual understanding, this may not explain why older students continue 
to face difficulties with symbolic expressions. As our analysis above shows, 
knowledge of syntax mediates the application of proceptual knowledge, and is in 
general necessary to make sense of expressions. What is needed is a better 
understanding of the way syntactic and proceptual knowledge interact and support one 
another. 
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Figure 3: Difference between the sums formed by two L-shapes 
 
We shall consider next some examples from Bell (1995) that involve the use of 
symbolic expressions in reasoning and justification. These are tasks set for 13 and 14 
year olds and take the form of finding a pattern and using algebra to prove that the 
pattern is indeed general, or that it is not. In one of the tasks, students choose a 3 × 3 
array of adjacent numbers on a calendar to study the patterns and relations between 
these numbers. Some patterns are found by adding and subtracting combinations of 
these numbers. A student, Julia, finds a pattern by adding the numbers inside two L-
shapes and taking the difference of the sums (see figure 3). In her neat written work, 
she presents the first example with actual numbers from the calendar (figure 3a) and 
shows that the difference is 44. In the second example, she uses ‘x’ for the number in 
the middle of the array (figure 3b) and computes the difference ‘in algebra’. She again 
obtains the answer as 44, which is independent of ‘x’ leading her to conclude that the 
pattern is general and will hold for any 3 × 3 array on the calendar. 

Let us carefully consider the steps in Julia’s reasoning that allow her to reach this 
conclusion. The first step is the use of expressions to denote the various numbers in 
the array. Presumably through prior supportive teaching, Julia has acquired this aspect 
of the notion of substitutability: that expressions can be used in place of the actual 
number. She takes the further step of operating with these ‘unclosed’ expressions by 
adding them to express the sum as 
 

x – 6 + x – 7 + x – 8 + x – 1 

 
Next Julia simplifies this expression to obtain 4x – 22. This is an important step and it 
is interesting to ask what the basis for this action is. Is she thinking about the four 
different numbers that she is adding and the relation that they bear with each other, or 
is she reasoning syntactically? Thinking in the syntactic mode frees one to break up 
each expression standing for a number into ‘atoms’ that can freely move and combine 
with one another in new and convenient ways. (This point would be more obvious had 
Julia used brackets around each of the numbers.) Notice that Julia is using the 
algebraic convention of writing ‘4x’ instead of ‘4 × x’. Does this suggest that she is 
merely gathering together the ‘x’s and not thinking of adding the four numbers with x 
forming a part of each? In other words, is she already thinking in a syntactic-structural 
mode? 
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After repeating a similar step for the other L-shape, Julia finds the difference between 
the two expressions as  

(4x + 22) – (4x – 22). 
 
Appropriately, Julia uses brackets to write the difference and evaluates it to 44. Bell 
remarks that she was successful in doing this by thinking of the ‘global meaning’ of 
the bracketed expressions (22 more than 4x, take 22 less than 4x, p.54). This would be 
a difficult move for most students, as Bell admits. In instructional sessions aimed at 
helping students learn to work with brackets, he reports the use of various strategies, 
besides the referential strategy of thinking of the meaning of the operations and the 
bracketed expressions, that are deployed to help students find the difference. One 
strategy is substituting with numbers and checking. Another is to evoke cognitive 
conflict through the application of a wrong rule such as 13 – (6 – 2) = 13 – 6 – 2? 

Dealing successfully with brackets is an essential component of the reasoning 
process in many contexts where algebra is used to justify or prove a general property. 
It is, for example, a necessary step in completing the reasoning involved in ‘guess my 
number’ games. Thus it forms one of the core components of the ability to use 
symbolic expressions in reasoning. It is also one of the areas of difficulty for many 
students and even adults. The traditional approach is to teach students a set of bracket 
opening rules. However, the variability in the bracketed expressions that students may 
encounter, makes the learning of these rules particularly difficult. One can have the 
different operation signs:  ‘+’, ‘–’, ‘×’ or ‘÷’, to the left or to the right of the brackets, 
or one can have any number or combination of numbers, letters and operation signs 
within brackets, or one can have embedded bracketed expressions. It is not surprising 
that many students fail to generate and apply the correct rules.  

Given the variety of these possibilities and the ensuing complexity, a single 
instructional approach may not be enough to ensure that students learn to deal with 
brackets. For example, triggering the operational sense may work in simple cases with 
a majority of the students, but may impede progress in absorbing the more complex 
cases into the knowledge base. We have found that students can think more easily of 
the operational meaning of expressions of the form a + (b ± c), but find it difficult to 
do so with expressions of the form a – (b ± c). These difficulties increase when other 
operation symbols are used and with increasing number of terms within the brackets. 
This suggests that at some point students need to cross over into syntax based 
thinking. The learning process involved might be to secure a few simple syntax based 
rules and use this base to learn to deal with more complex examples. In general, the 
issue of how semantic processes, of associating symbols with the numbers or 
operations that they denote, aid the learning of syntactic rules is complex and needs to 
be carefully researched. 

In discussing the example of Julia’s reasoning, I wished to draw attention to the 
syntactic-structural moments in her reasoning process. However, it would be 
injudicious to pass over the remarkable pedagogical innovation that the activity 
represents without comment. Despite being simple and familiar to students, the 
activity engages the power of algebra in generalizing and justifying. The sequence in 
Julia’s choice of the three presentations, the variations and the invariances between 
them together offer a rich opportunity for learning. In Julia’s third version of the array 
a subtle variation is introduced by changing the position of the number denoted by ‘x’. 
Julia then recomputes the difference of the sums in the two L-shapes and again finds it 
to be 44. The pedagogical insight at work here is important and noteworthy – a 
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variation is introduced that does not make a difference to the final outcome. The 
student has a hunch that this must be so and uses this as a check and a guide while she 
carries out the steps of her reasoning and then makes the required syntactic 
transformations. We have found this didactic principle extremely useful in designing 
tasks that allow students to use their syntactic skills in a meaningful manner. We shall 
call this principle the ‘many paths, single destination’ principle and I shall make 
reference to it later on.  

I hope that the points made above make the case for greater attention to be paid to 
algebra as the syntactically guided use of formalisms in innovative approaches to 
algebra teaching. This is not to contest the importance of algebra in other contexts 
such as generalizing or equation solving. These are important aspects of algebra but 
the power of algebra in dealing with formalisms gives access to a domain of reasoning 
and thinking that is otherwise not available to students. If students acquire this ability, 
it opens the door to reasoning about patterns that basically are extensions of students’ 
knowledge of  arithmetic. Therefore not only is this domain within the reach of 
students' understanding, but such reasoning is also a natural extension of arithmetic 
understanding. Experiencing the power of algebra in this domain, I suggest, is an 
essential component to taking students away from the notion that algebra is just a 
crank to be turned to produce answers. Just as research has illuminated other kinds of 
algebraic thinking that occur and can be strengthened through suitably designed 
instruction, research is needed to clarify how students come to acquire syntactic-
structural reasoning abilities, what the preliminary forms of such reasoning are and 
what learning experiences and instructional practices support its development.   
 
In the following section, I shall briefly mention certain approaches to teaching algebra 
that focus on structure. I shall use the opportunity to revisit the issue of how sense-
making and learning abstract rules of symbolic transformations can be reconciled 
during teaching and learning. 
 
 

Focusing on structure in algebra teaching 
The power of algebra stems in large part from the use of symbolic expressions in 
problem solving and in justifying and proving. A recognition of the importance of 
acquiring facility with algebraic symbolism lies behind much of the emphasis on 
symbolic algebra in the traditional algebra curriculum. However, as several studies, 
many of them decades old, have shown, students’ facility with symbolic algebra 
remains woefully inadequate even after instruction (Booth, 1984; Kieran 1992). Basic 
errors and misconceptions such as the conjoining error (3 + x = 3x) and 
misconceptions about what letters stand for are frequent and widespread. Clearly it is 
difficult to develop any ability in symbolic algebra on such a shaky basis. The early 
research inspired a succession of teaching intervention studies that have focused on 
enhancing students’ understanding of different aspects of symbolic algebra: the 
concept of the variable (Booth, 1984), the solution of linear equations (Linchevski and 
Herscovics, 1996), the parsing of expressions (Thompson and Thompson, 1987) and 
the structure of expressions (Liebenberg et al, 1999). 

A persistent concern in this thread of studies has been to leverage students’ 
understanding of arithmetic in learning algebra. By the end of primary school many 
students develop a good understanding of operations with whole numbers. Despite 
this, students’ ability to deal with arithmetic expressions remains limited. For example, 
Chaiklin and Lesgold (1984) found that students could not judge the equivalence of of 
expressions like 685 – 492 + 947 and 947 – 492 + 685 without recourse to 
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computation. While some studies have addressed themselves to the issue of the 
‘cognitive gap’ between arithmetic and algebra (Linchevski and Herscovics, 1996) 
others have attempted to show that errors found in students’ work in algebra have their 
counterparts in arithmetic (Linchevski and Livneh, 1999), although with the 
interesting difference that in the case of arithmetic expressions, errors are also 
dependant on the specific numbers that appear in the expressions. 

Most of the teaching studies mentioned above have attempted to build the basics 
of students’ abilities to deal with symbols through strengthening their semantic 
connections. This perspective is captured in Booth’s statement that ‘the essential 
feature of algebraic representation and symbol manipulation, then, is that it should 
proceed from an understanding of the semantics or referential meanings that underlie 
it.’ (Booth, 1989, p.58) However, the issue of the connection between arithmetic and 
algebra, especially in terms of symbolism, is not straight forward. One can 
legitimately ask whether the structure of an expression is more transparent in algebraic 
rather than in arithmetic expressions, since algebraic conventions are designed to 
enhance structure. Linchevski and Livneh (1999) have raised doubts about whether 
focusing on teaching structured arithmetic as a preparation for algebra is a good 
pedagogic strategy. In a similar vein, Kirshner (2001) has questioned the belief 
underlying Booth’s statement that referential sense-making is the right preparation for 
dealing with algebraic symbolism. He advocates an approach that strengthens the 
syntactic-structural aspect of algebra together and in parallel with meaning-based 
instruction. He calls for a renewed effort to explore the possibilities of structural 
algebra teaching, that ‘honors both structural and referential possibilities for meaning 
making in algebra’. 

Our analysis of the examples in the earlier sections also point to the difficult and 
complex connection between referential sense-making and syntactic understanding of 
symbolic expressions. We may assume that the ability to understand and work with 
symbolisms proceeds from a knowledge base of rules for dealing with expressions. 
This assumption has not gone unchallenged. For example, Kirshner (2001) offers the 
interesting alternative suggestion that symbolic ability may stem from perception-
based rather than rule-based abilities to interpret and match patterns in symbolic 
expressions. While this may be the case for those who have already reached expert 
level performance with regard to symbolic expressions, novices must still rely on 
rules. Studies of skill development show that the initial phase of learning is 
characterized by slow, deliberate actions where rules are recalled often and explicitly 
(Anderson, 1998). The issue of concern may then be reformulated as how conceptual 
understanding in the domain of arithmetic contributes to the learning of these rules. It 
may be necessary to go further than probing the connection between arithmetic and 
algebra and re-problematize the entire general issue of the connection between 
concepts and rules in learning.  

A straight-forward connection between concepts and rules is found in the fact that 
rules are formulated in terms of concepts. The ability to choose concepts carefully so 
that rules are formulated clearly and economically is part of a good teacher’s 
repertoire of instinctive pedagogical skills. We believe that much can be gained from a 
careful choice of concepts while introducing rules to children, and more importantly, 
from a careful choice of naming practices. The rules for dealing with expressions are 
traditionally formulated in terms of procedures. Thus we have the rules for the order of 
operations such as, ‘do multiplication and division before addition and subtraction’. 
Stating rules in this way reinforces the procedural interpretation of expressions. We 
propose a structural recasting of these rules that can be introduced right at the 
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beginning of students’ work with expressions. The proposal finds support in studies of 
cognitive development concerning the effect of naming on categorization. 

Markman (1989, 1990) in a series of experiments explored the effect of naming 
on categorization among young children. She points out that the enormous vocabulary 
that most children acquire by the age of six – between 9000 to 14000 words – could 
not have been acquired only through inductive processes, or even by forming 
hypotheses about the meanings of words and testing them. This phenomenon suggests 
the operation of cognitive constraints on how children interpret novel labels. Two 
important constraints that Markman identifies are the taxonomic assumption and the 
mutual exclusivity assumption. The taxonomic assumption takes labels to refer to 
objects of the same kind rather than objects that are thematically related. This is a 
particularly strong constraint since Piagetian and post-Piagetian studies have shown 
that thematic relations are more salient than taxonomic relations for young children. 
However, when children ‘are learning a new word, they shift their attention from 
thematic to categorical organization’ (Markman, 1990, p.60). The mutual exclusivity 
assumption rules out the interpretation of two different labels as denoting the same 
category. It is this assumption that allows the formation of super-ordinate or 
subordinate categories. Thus when children hear an object being labeled by two 
different words, they assume that one of them is at a different level of categorization 
(or in certain contexts that it refers to a salient part of the object rather than the whole 
object, etc.) 

The relevance of Markman’s work to our discussion is that it brings home the 
importance of naming practices in concept learning. A careful choice of names that are 
appropriate, and that reflect the hierarchical organization of the concepts is a powerful 
aid in concept learning. In the following section I outline a teaching approach that uses 
this principle in enhancing the salience of the structure of an expression. In this 
approach, the concept of ‘term’ forms a nucleus for the organization of the structure of 
both arithmetic and algebraic expressions.  

 
 

A structural approach to teaching expressions 
It is necessary to first clarify what we understand by the ‘structure’ of an expression. 
The pre-requisite to a structural understanding of arithmetic or algebraic expressions is 
the idea of the value of an expression, the idea that an expression stands for a number. 
Understanding the structure of an expression means that students should be able to 
correctly parse the component parts of the expression and to obtain a sense of the 
relation of these parts to each other and to the whole. The relation in question is how 
the parts contribute to determining the value of the expression as a whole. 
Understanding this relation would imply that students can recognize the equivalence 
of expressions on the basis of structure. Further they would be able to identify a 
neighbourhood of related expressions – either equal to the given expression or related 
to it in definite ways – into which the given expression may be transformed. Thus 
knowledge of permissible transformations is also a part of the structural understanding 
of expressions. 

The structural approach to teaching arithmetic and algebraic expressions that I 
shall describe here was developed over teaching cycles involving different groups of 
students from schools that followed the traditional curriculum. Students who studied in 
the local language, Marathi, as well as students who studied in the English language 
(although English was not their mother-tongue) formed separate groups during 
instruction. Here we present only an outline of this approach with examples of 
activities that are included. More details and discussion of students’ learning may be 
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found in Subramaniam and Banerjee (2004) and Banerjee and Subramaniam (2004). 
Our approach includes an explicit initial focus on the ‘product’ and ‘relation’ aspect of 
expressions. It was felt that for students who were used to a traditional approach, an 
explicit focus on a different way of looking at expressions was necessary. At the 
beginning of the instructional module, students are told that while, in the earlier 
grades, they looked at expressions as describing a sequence of operations that needed 
to be carried out, they should now look at expressions differently. Each expression 
stands for a number, which is the value of the expression, and expresses some 
‘information’ about the number. Thus the expression 5 + 3 stands for the number 8 and 
expresses the relation ‘(the number which is) 3 more than 5’. Students are encouraged 
to find other expressions for the number 8, and to verbalize the relation that each 
expression expresses. At this stage, they are also introduced to expressions that use a 
letter which stands for a number, which could be ‘any number’. 

The notion of equality is the pivotal concept in developing an understanding of 
expressions. Students are introduced to the idea that two expressions are equal if they 
stand for the same number, that is, if they have the same value. Expressing this 
symbolically using the ‘=’ sign is a hurdle for many students because of a familiar 
misunderstanding of the ‘=’ sign as an instruction to ‘do something’ and write down 
an answer. To obtain experience with using the ‘=’ sign differently, students work at 
tasks involving the comparison of expressions, which are similar to the ‘true’ and 
‘false’ number sentence tasks in Carpenter and Levi (2000). Other exercises along 
these lines require them to generate expressions equal to a given expression and to fill 
in terms to make expressions equal. Comparing expressions is also done using the 
metaphor of a balance, which is reinforced through the use of a diagram. Thus students 
get used to looking at expressions on both sides of the balance in order to compare 
them, initially by evaluating the expressions and later on increasingly, by focusing on 
their structure. 

One of the most important features of the structural approach is the early and 
explicit focus on the concept of term (Banerjee and Subramaniam, 2004). This concept 
is introduced while working with arithmetic expressions and then reinforced as letters 
are introduced in the expression. In fact, as students work with expressions containing 
numbers, letters are introduced as early as possible and whenever the context allows, 
in order to reinforce the idea that letters stand for numbers. The concept of term is 
situated in the context of evaluating expressions and of comparing expressions. Terms 
are distinguished from numbers by attaching the preceding ‘+’ or ‘–’ sign. Thus the 
simplest expressions contain simple terms which may be positive or negative.  

To get students to move closer to structural thinking, we explicitly contrast a 
‘new’ method of evaluating expressions that is different from the method that students 
have been familiar with up until now. Instead of adding and subtracting the numbers in 
the simple expressions, they now learn to combine terms. Simple terms are easily 
combined. Simple positive terms combine by adding up. Similarly simple negative 
term also ‘add up’. Positive and negative terms compensate one another. The idea of 
compensation is not difficult for students to understand and is reinforced through 
different exercises. The parsing of an expression into terms, segregating the positive 
and negative terms and combining terms, together form a set of connected actions that 
many students readily absorb. The main initial context for working with the concept of 
term are tasks of evaluating and comparing expressions and tasks of generating 
expressions equal to a given expression. In the process, students become familiar with 
the fact that changing the order of terms does not change the value of an expression. 

The simple task of evaluating expressions can be made interesting by including 
terms that compensate or nearly compensate each other. During whole class teaching, 
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students are encouraged to find easy ways of evaluating expressions in which terms 
have been deliberately and carefully chosen so that they compensate one another 
partially or wholly (figure 4). This reinforces the parsing of expressions into terms and 
the idea of compensation of terms. The experience with combining terms makes the 
concept of the expression with inverse value accessible to students. Students are asked 
to evaluate an expression like 24 – 8 – 7, and asked to guess the value of –24 + 8 + 7, 
or alternatively are asked to generate an expression that has the inverse value. The 
notion of inverse value is invoked again during instruction on bracket opening rules. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Finding compensating terms in an expression 

The next step involves the introduction of the concept of the product term. When there 
is a ‘×’ sign present, the factors together form a product term. An important 
restructuring element is introduced at this point: while simple terms are readily 
combined product terms cannot be. They must first be reduced to simple terms before 
they can be combined. (Later students learn the exception to the rule, namely that 
product terms may be combined if they have one or more common factors.) With this 
move we absorb the convention of the precedence of multiplication into a structural 
system of naming terms. Students again carry out tasks of identifying terms in given 
expressions and finding equal expressions, but now the expressions contain product 
terms. The idea that only simple terms can be combined and the concept of a product 
term helps to guard against the conjoining error while working with letters or variable 
terms. The conjoining error and the violation of the rule of order of operations are 
among the most common errors students make with regard to expressions. By taking 
advantage of the structural system of naming, we have recast these rules in the form of 
a negative heuristic, namely, that terms other than simple terms cannot be combined. 
We hypothesize that negative heuristics, especially those that are structural and related 
to patterns of visual parsing, are more effectively learned than positive heuristics, that 
state that such and such an action must be done when a certain condition is met, which 
are essentially procedural rules, such as the operation precedence rules. This 
hypothesis is in need of more intensive empirical testing. While the initial results of 
our teaching interventions are promising (reported in Subramaniam and Banerjee, 
2004 and Banerjee and Subramaniam, 2004), more studies are needed to examine 
long-term effects in diverse settings. 
 

Figure 5 shows the organization of the concepts, definitions, rules and procedures 
in the structural approach to teaching expressions in the form of a concept map. Rules 
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and procedures that are invoked while dealing with expressions are shown separately. 
The other statements that appear in the concept map have the status of definitions that 
set up meanings and conventions. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. A concept map for teaching arithmetic and algebraic expressions  
(Can be extended to include concepts of division, reciprocal and indices.) 

 
 
Although the terminology, the concepts and the rules are new and seemingly artificial 
(in the sense of being formal and axiomatic), students do make connections with their 
arithmetic knowledge base. This is done at times explicitly on the initiative of the 
teacher, but more often occurs implicitly as children work with evaluating and 
comparing expressions and at generating equal expressions. We shall mention some of 
loci that connect students’ arithmetic knowledge with the new syntactic concepts, rules 
and procedures. No explicit rules are laid down for combining terms and students’ 
intuitive understanding of numbers is exploited, as for example in the idea of 
compensating positive and negative terms. Similarly the idea of an inverse expression 
whose value is the inverse of a given expression is founded on the arithmetic 
understanding of combining terms.  A further reinforcement takes place when students 
are asked to guess the multiples of a given expression, that is to write down an 
expression that gives n-times the value of the given expression. 

The network of concepts outlined allow students to reason about arithmetic and 
algebraic expressions in various tasks that we have just described. Students need to 
move on to using expressions in reasoning in the context of generalization or 
justification, in other words, they need to move on from reasoning about expressions 

Expression

terms

simple term complex term

product term bracket term

factors

variable factor

Every numerical expression has a
unique value.

Equal expressions have the same
value.

value

contains

contains

has

‘–’ sign indicates, take the inverse
value.

variable term

simple factor bracket factor

Rules
1. Only simple terms can be combined.
2. Exceptionally, product terms can be

combined if they have a common factor.

Procedures
1. Combining terms
2. Writing inverse expression
3. Applying distributive property

Equal expressions can be
substituted for each other.
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to reasoning with expressions. The key notions that they need to master here are of 
equality or equivalence, transformation and substitution. Another set of contexts are 
now used in the instruction module to add a further dimension of meaning to work 
with expressions. The numberline forms one of these contexts around which a number 
of activities may be centred. A modification of the numberline that is very useful to 
work with is the letter numberline, which we have adapted from Carraher and others 
(2001). Students initially get used to seeing different parts of the numberline since the 
starting number is varied in different tasks. The letter numberline is then introduced as 
an unspecified or unknown part of the numberline around a number, say n. (One needs 
to anticipate a particularly robust ‘origin-at-n’ misconception here. Students often 
think that the numbers to the left of n are negative numbers, as if n were the origin. It 
helps therefore to say that the numberline shown with letters is an unspecified part of 
the numberline, rather than another kind of numberline.) In figure 5, the regular 
numberline and the letter numberline are shown. The letter numberline provides a 
meaningful context to familiarize students with the notion of substitutability – that 
expressions can stand in place of numbers. Building students’ understanding of 
substitution is a critical part of the symbolic understanding (recall Julia’s use of 
expressions to stand for numbers on the calendar). In the letter numberline, students 
verify that once the value of ‘n’ is fixed, the expressions yield, on substitution, the 
correct numbers at their respective positions. 

Brief descriptions of a sample of the tasks done with the numberline and with 
shapes built from rectangles are presented below. I also discuss ways in which these 
tasks allow students to apply their knowledge of symbolic expressions. The main 
design principle in generating these tasks is that students have alternative ways of 
arriving at the solution – the ‘many paths, one destination’ principle – and they use 
symbolic expressions in consolidating their understanding of the alternative ways. 

 

Numberline journeys 
Figure 6(a) below shows an example of a numberline journey with the expression 
describing the journey written next to it. Figure 6(b) describes an example of a journey 
on the letter numberline. In these tasks students find ways of combining terms to find 
the destination point of the journey. The visual map of the journey serves as a check 
while they work with expressions. Journeys can get as complicated (and as interesting) 
as the students wish, with the constraint that they must write down the expression to 
describe the journey! 
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Figure 6: Numberline journeys 

 
 

Distances on the numberline 
Students work through a set of exercises of finding the distances on the numberline to 
generate the rule that the distance may be found by subtracting the smaller number 
from the bigger number. This is also verified for special cases involving the number 
zero or negative numbers. The activity is then extended to the letter numberline. 
Combining terms while working with numberline journeys is relatively simple. To 
find distances on the numberline, students have to operate with the unknown. They 
need to learn how to remove brackets and to subtract letter numbers in order to find 
the distances, say, between the numbers n – 1 and n + 2. Again the visual map of the 
distance serves as a check for the manipulation of symbolic expressions. 
 

Numberline concordance 
Students find a map from points on the numberline to a ‘co-numberline’, which is a 
copy of the numberline that may be displaced, shrunk or flipped, or may have 
undergone a combination of these transformations. Only vertical alignment lines 
(shown as dotted lines in figure 7) are used and so only linear functions are included. 
In describing the co-numberline, photographic metaphors of reduction and 
enlargement, and of left-right flipping in photo-negatives, provide an opportunity to 
engage students’ imagination. Besides being a powerful visual model of linear 
functions, this representation also offers opportunities to meaningfully use 
substitution. Having found an expression for the function, students check by 
substituting actual numbers, and also expressions, in place of the variable. For 
example, in the function f: x  2 × x, substituting x + 1 in place of x should yield 2 × x 
+ 2. This may be checked in two ways, (a) by looking at the map and seeing what  
corresponds to x + 1 and (b) by substituting in the expression for the function and 
using the distributive property to open brackets: 2 × (x + 1) = 2 × x + 2. 
 
 

0 1 2 3 4 5 6 7 8 9-2-3-4-5-6 -1-7 0 1 2 3 4 5 6 7 8 9-2-3-4-5-6 -1-7

n n+1 n+2 n+3 n+4n-1n-2 n n+1 n+2 n+3 n+4n-1n-2

n + 1 + 4 – 3 = n + 2

2 + 5 – 3 = 
4

(a)

(b)
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Figure 7: Numberline concordance 
 

Area problems 
Here students learn to find the area of rectangles such as those in figure 8(a) in two 
ways: by either finding the total length (6+2) or by dividing the given rectangle into 
two smaller rectangles. With support from the teacher, students write down an 
expression that describes the method that they followed. The two expressions for the 
rectangle in the figure are 
 

5 × (6 + 2) = 5 × 8 = 40  
and  

5 × 6 + 5 × 2 = 30 + 10 = 40 

Figure 8: Areas of shapes made of rectangles 
 
The important turn in the classroom discussion introduced by the teacher here is 
asking students to consider the two expressions written down for finding the area 
without referring to the figure. Can the students say without evaluating the 
expressions, by just looking at the expressions if they are equal? How can they do so? 
The discussion becomes a context for reinforcing the use of the distributive property in 
rewriting expressions without brackets. 

In the group of 11 year olds who worked with the area task, some students had 
difficulties with the concept of area that we did not anticipate. Many did not have a 
clear understanding of why the area of a rectangle was a product of the length of the 
sides. Some students calculated the area of the rectangle in figure 8(b) as 5 × 8 × 5! 
Other students did not immediately recognize that opposite sides of a rectangle have 
the same length. With such an insecure notion of area, it is not surprising that some of 
them did not recognize that the area of a shape was equal to the sum of the areas of its 
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parts. For more complex shapes such as ‘L-shaped’ polygons as in figure 8(c), many 
students were unable to come up with a strategy to cut the shape into parts and find the 
area, while some students applied this strategy fairly easily.  

In the following section I shall describe some examples of reasoning by students 
in the context of tasks requiring the comparison of expressions. I focus especially on 
the efforts that students make to bring to bear their arithmetic understanding while 
making sense of expressions and highlight instances of how students attempt to extract 
or extend rules at the syntactic level while struggling to make this consistent with what 
their operational sense tells them. 
 
 

Comparing additive expressions: Students’ beginning attempts at syntactic-
structural reasoning 
I choose here for discussion a set of tasks adapted from earlier studies requiring the 
comparison of additive expressions without calculation. In a study by Chaiklin and 
Lesgold (1984) students were asked to compare expressions such as 685 – 492  + 947 
and 947 – 492 + 685, but found the task difficult without resorting to computation. 
Van den Heuvel-Panhuizen and Gravemeijer (1994) have used additive expressions in 
assessment tasks for upper primary students. In these tasks, students are given the 
answer to an addition problem such as 238 + 487 = 725, and are asked to find the 
answer to 237 + 487 without actually computing. These latter assessment tasks formed 
the inspiration for the initial version of our own comparison tasks. After students had 
successfully found a related sum, we asked them to give a justification for what they 
had done. This was quite hard for the students to do both verbally and symbolically. 
One of the simple forms of justification adopted by the students was to compare the 
expressions term by term. For instance in the pair presented above, they would say 
‘237 is one less than 238, 487 is the same. So the answer is 724.’ While the reasoning 
works perfectly well for this example, they would imitate its form for other examples 
where it was inappropriate and hence make an error. Such pairs either had a ‘–’ sign 
(487 – 238; 487 – 237) or had compensating terms (238 + 487; 237 + 488). In the 
initial instructional cycle, it appeared that the very act of eliciting verbal justification 
sometimes misled the students into making wrong judgments, which they might have 
avoided if they had to just compare the expressions without explaining their 
judgments. 
 
One student in the group came up with an interesting justification for why the 
following expressions were equal: 27 + 32; 29 + 30. 
 
Mitali: The two expressions are equal because we have taken 2 from 32 and given it to 
27. 
 
In subsequent teaching cycles this form of justification reappeared spontaneously with 
two groups of students studying in the local language Marathi. After one student had 
expressed this form of reasoning, it was readily picked up by other students for similar 
examples. Two forms of the comparison task were used in these and later teaching 
cycles. One required students to insert the correct sign (‘>’, ‘<’ or ‘=’) between two 
expressions. An alternative form required them to fill in a term in a blank in one of the 
expressions to complete an equation, for example, 28 + 13 ___ = 27 + 13. 
Many students made mistakes while comparing expressions with a negative sign, such 
as 37 – 17; 37 – 18. Their justifications indicated that they had either generalized 
incorrectly from the previous examples with a ‘+’ sign, or were comparing only the 
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numbers involved without taking into account the operation sign. This was one of the 
reasons that initially led us to emphasize the concept of term as a way of parsing an 
expression. In the second teaching cycle, where students had learnt the concept of term 
and had used this concept in comparing expressions, one student made an interesting 
extension of the vocabulary of terms for comparing pairs of expressions with a ‘–’ ve 
sign. 
Arjun: The first term (in the two expressions) is the same, and –17 is greater than –18. 
So 37 – 17 is bigger. 
 
Students are introduced to integers at the beginning of grade 6 in the curriculum 
followed in most schools. Arjun had used his recently acquired knowledge of negative 
numbers and the relatively novel idea that –17 is larger than –18, to make the 
comparison between the terms in the two expressions. This was readily picked up by 
many students in Arjun’s group who produced this form of justification in subsequent 
written tasks. Learning the concept of term did  lead the students to compare terms 
with a ‘–’ sign more accurately. However, in the exercises where they had to fill in a 
missing term we found an interesting form of reversal error. In the blank in the 
question 28 + 13 ___ = 27 + 13, students would write ‘+1’ instead of ‘–1’. This form 
of the error was one of the most frequent errors. We speculate that the reason for the 
error could be that students were comparing the values of the expressions and were 
filling in the blank a description of how much bigger or smaller the expression was. 
Thus the term that is filled in the blank is used in an ‘adjectival’ sense, to characterize 
the proximate expression, rather than as establishing an equality with the other 
expression. In the case of the example above, +1 indicates that the expression on the 
left is one more than the expression on the right. This error appears to be related to the 
well-known reversal error in writing equations. The most famous example of this is 
the equation 6S = P, that students wrote to show that there are six times as many 
students as there are professors with S standing for the number of students and P for 
the number of professors. 
 
The most difficult pairs of additive expressions were those that had partially 
compensating terms. One of the instructional sessions dealt with comparing such 
expressions and finding their difference. We discuss an episode from one classroom 
lesson in the local language Marathi dealing with this topic. In this lesson, students 
worked with tasks such as the following:  
 

Compare the two expressions. If the expressions are unequal, find also the 
difference between the expressions: 54 + 27; 55 + 25 

 
In the first part of the lesson, students worked with several pairs of expressions and 
found the difference. The teacher encouraged students to write a mathematical 
sentence to explain how they had obtained the difference between the expressions. At 
one point in the lesson, the teacher asks students to work with the pair of expressions 
presented above. After finding out which expression is larger, students write the 
following mathematical sentences: 2 – 1 = 1 and + 2 – 1 = 1 to find the difference 
between the expressions. At this point in the lesson, one of the students, Suraj starts to 
say something about these sentences but then checks himself and stops. Although the 
teacher asks him what he wanted to say, he is silent. The class then moves on to the 
next example which is to compare the expressions  
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67 + 38 and   65 + 37 

 
Another student, Tanaji, offers the following symbolization and justification: 
 
Tanaji: The difference between 67 and 65 is 2, the difference between 38 and 37 is 1. 
Take away 1 from 2, the difference is 1… So +2 – 1 = 1.  
 
Tanaji’s solution is wrong. Some students protest. The teacher points out that the 
difference between the expressions is not 1. Tanaji’s error may be simply because of 
an over-generalization from previous examples where students found the difference of 
the differences between the expressions. In contrast, in this pair of expressions the 
differences add up, a point that Tanaji does not notice. 
 
Pratibha then offers the expression +2+1 to determine the difference as +3. The 
teacher checks this with the students and finds that it is correct. At this point  
Suraj asks, 
Suraj: Bai (teacher), what is –2 – 1?  
 
The question is significant because the students have not yet learnt to operate with 
negative numbers. On a few occasions, the teacher has explained addition and 
subtraction with the help of the numberline. So she explains how to find the value of  –
2 – 1 using the numberline. Stepping on an imaginary numberline, she shows that –2 – 
1 is equal to –3. The teacher then turns to Suraj and asks him how he obtained the 
expression –2 – 1. Suraj explains how he got –2 by going from 67 to 65, and –1 by 
going from 38 to 37. The teacher completes the explanation by saying that –3 means 
that the expression becomes less while going from left  to right. 

 
Suraj’s response is different from the other students’ responses in that he is trying to 
use the symbols in a manner consistent with this sense of the relative magnitudes of 
the terms and the expression. This is different  from a response where students ‘adjust’ 
the symbolism to obtain the answer that they think is right. It is also possible that other 
students were constrained by their lack of understanding of operations with negative 
numbers.  

These examples from students’ responses to the comparison tasks suggest several 
points. The first is that when students compare the expressions, they are looking at the 
relations and not specific numbers. This is suggested by their preference for referring 
to the number by indexing its order rather than by referring to its value, as for 
example, in the statement, ‘the first term is less and the second term is more’. The 
specific numbers in the expression are relatively unimportant and function like quasi-
variables (Fujii and Stephens, 2003). We see repeatedly a tendency among students to 
extract rules and to overgeneralize rules. We do not know whether this tendency is 
natural and develops spontaneously or whether this is a result of the approach to 
teaching currently prevalent in schools. Even if the latter is the case, learning and 
extending rules also have creative moments, as for example, when Arjun makes a 
connection between his knowledge of negative numbers and of terms. The manner in 
which students try out new rules in new and unfamiliar situations also suggests that a 
process of hypotheses formation and testing may be at work, akin to that in the 
development of lay or scientific theories. A written test may capture only one moment 
in the extended process of hypothesis-formation and testing, especially if test items are 
new and unfamiliar to students.   
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We need to consider the frequency with which students invoke syntactic rules, 
extend and generalize them, often erroneously, together with the relatively few but 
significant instances of successfully connecting these rules with the semantics 
underlying expressions. This pattern of response makes the case for a more systematic 
effort to find ways in which their understanding of symbolic expressions can be 
strengthened. Given the fact that mathematical symbolism is evolved over a 
considerable historical period, it is not likely to be spontaneously invented by students 
or easily absorbed. Hence from a research perspective, questions about how students 
acquire this form of algebraic thinking are bound together with questions about 
instructional practice. It appears therefore that the modality of teaching intervention 
research is appropriate to pursue these questions. In the course of instruction, naming 
practices can make a significant impact on concept learning and can guide the 
development of perceptual parsing skills and pattern recognition with regard to 
symbolic expressions. They also make a movement away from procedure based rules 
towards structural rules possible. While we are persuaded that carefully designed 
naming practices such as those outlined in this paper can make a significant impact on 
the learning of symbolic arithmetic and algebra, more evidence needs to be gathered 
before the case can be made for grafting this approach on to a curriculum. Similarly 
there is a need to identify more activities that allow students to engage in tasks along 
both the dimensions of reasoning about and with expressions and to calibrate these 
activities in terms of difficulty level and projected learning paths.  
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