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Abstract The article reports aspects of the evolution of a teaching approach over repeated
trials for beginning symbolic algebra. The teaching approach emphasized the structural
similarity between arithmetic and algebraic expressions and aimed at supporting students in
making a transition from arithmetic to beginning algebra. The study was conducted with
grade 6 students over 2 years. Thirty-one students were followed for a year, and data were
analysed as they participated in the three trials conducted that year. Analysis of students’
written and interview responses as the approach evolved revealed the potential of the
approach in creating meaning for symbolic transformations in the context of both arithmetic
and algebra as well as making connections between arithmetic and symbolic algebra.
Students by the end of the trials learnt to use their understanding of both procedures and a
sense of structure of expressions to evaluate/simplify expressions and reason about equality/
equivalence of expressions both in the arithmetic and the algebraic contexts.

Keywords Arithmetic . Algebra . Structure . Teaching approach . Term . Equality .

Expressions

1 Introduction

Early research in the area of algebra teaching and learning revealed the many difficulties
that students face while learning algebra. These include students’ lack of understanding of
symbols/letters and of the manipulation of symbolic expressions/equations (e.g. Kuche-
mann, 1981; Booth, 1984; Kieran, 1992; MacGregor & Stacey, 1997). Many of these
difficulties could be connected to students’ poor knowledge of transformation of numerical
expressions. Students could not identify equality of two arithmetic expressions without
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computation, arbitrarily computed the arithmetic expressions depending on the numbers
which appeared in the expression as well as made some systematic errors, like the
‘detachment error’: 23−6+7=23−13=10 (e.g. Chaiklin & Lesgold, 1984; Kieran, 1992;
Linchevski & Herscovics, 1996; Linchevski & Livneh, 1999; Linchevski & Livneh, 2002).
These studies indicated that students misunderstand order of operations and do not use them
to develop an understanding of transformations that can keep the value of an expression
equal (that is, they lack an aspect of structure sense). These ideas are important to learn in
arithmetic as transformations in algebra use them as general rules and properties.1 Algebraic
expressions share structural similarity with arithmetic expressions and thus arithmetic can
serve as a useful ‘template’ on which understanding of transformations in algebra can be
built (Linchevski & Livneh, 1999).

Students’ prior arithmetic exposure in computing binary operations does not prepare
them enough to handle multiple operations in arithmetic expressions and to develop
understanding of the crucial properties of numbers and operations. In the absence of a well-
developed understanding of transformations in the numerical context, students often use
arbitrary procedures to simplify algebraic expressions and may commit the same errors as
in the arithmetic context (e.g. Kieran, 1992; Fischbein & Barash, 1993; Linchevski &
Livneh, 1999). It is also possible that students (including in this country) develop a pseudo-
structural understanding of algebraic expressions, where they may know rules of symbolic
transformation and may understand two expressions as equivalent if their values are the
same after replacing the letter with a number. But they may not make a connection between
the two, that is, a valid transformation ought to keep two expressions equivalent and
therefore for any value of the letter, expressions will lead to equal numerical value (Cerulli
& Mariotti, 2001). This, to some extent, explains the sense of arbitrariness and
meaninglessness that students feel while working on symbolic algebraic transformations.
In order to better understand symbol manipulation in algebra, students must appreciate the
following: (a) different ways of evaluating an arithmetic expression must yield the same
value and (b) corresponding to these, there are valid transformations of algebraic
expressions that yield expressions equivalent to one another.

Recognizing the difficulties that students face in algebraic symbol manipulation due to
inadequate understanding of arithmetic expressions, we conducted a study over 2 years with
grade 6 students (11–12 year olds, first year of algebra instruction) to develop a teaching
approach that could help manage the transition from arithmetic to beginning symbolic
algebra. The teaching approach gradually evolved through repeated trials during the study,
emphasizing the structure of arithmetic expressions and using this understanding in the
context of algebra. In this paper, we discuss aspects of the evolution of the teaching
approach together with its potential for (1) creating meaning for symbolic transformations

1 The words ‘arithmetic’ and ‘algebra’ are used in this article to indicate in the first place identifiable
domains of the school curriculum. Algebra is typically introduced in Indian schools in grade 6 with the
introduction of the use of letters. Hence, the use of ‘arithmetic’ or ‘arithmetic expressions’ or ‘arithmetic
context’ (i.e. context of arithmetic tasks) refers to the part of the school curriculum that eschews the use of
variables. Similarly, ‘algebra’, ‘algebraic expressions’ and ‘algebraic tasks’ refer to tasks that involve the use
of letter variables and belong to an identifiable part of the school curriculum. Thus, we use the term
arithmetic to include knowledge of numbers and basic operations on them, transformation of numerical
expressions and knowledge of properties of operations with respect to numbers. This study uses only the
integer number system. Algebra is the domain consisting of operating on and with the letter, transformation
of expressions with letters, formal and generalized understanding of rules and properties of operations, and
using the letter for representing, proving and generalizing. However, as much literature has shown, arithmetic
tasks can embody aspects of ‘algebraic thinking’, and hence the ‘arithmetic’ tasks used in the study aim to
introduce students to ‘algebraic thinking’ in the context of numbers.
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and (2) making the transition to beginning symbolic algebra. The discussion is restricted to
an arithmetic based on rules and properties of operations and numbers and an understanding
of basic operations and beginning symbolic transformations in algebra, whose importance
in developing a complete understanding of algebra cannot be denied. We illustrate the
nature of the progress made by the students with respect to understanding and reasoning
about transformational activities in arithmetic and algebra through the trials. We especially
look for evidences of students’ abilities to use procedures and structure of expressions in a
complementary manner and to connect arithmetic and algebra.

2 Background

Many efforts have been made to use the numerical context provided by arithmetic to teach
algebraic transformations at the secondary school level with varying success. For example,
Booth (1984) highlighted the notational similarity between arithmetic and algebra during
instruction, so as to enable students to represent simple situations using unclosed algebraic
expressions but had limited success with respect to expressions with brackets. Some others
like Liebenberg, Linchevski, Sasman and Olivier (1999), Liebenberg, Sasman and Olivier
(1999), Livneh and Linchevski (2007), Malara and Iaderosa (1999) report studies where
students were taught computations on arithmetic expressions (expressions with multiple
operations, indices) in order to generalize them to the context of algebra. Except for the
study by Livneh and Linchevski where the intervention was found to be helpful in
transferring arithmetic learning to the algebra context in compatible situations, the other
studies pointed out students’ inability to generalize the properties of operations to the
algebra context. Students did not use the same rules of transformation across the domains,
nor did they use the rules consistently in arithmetic. Further, they could not use their
understanding of computation in non-computational situations of identifying equal
expressions. They continued to focus on procedures of computing arithmetic expressions
and treated the symbols procedurally rather than ‘proceptually’ (Tall, Thomas, Davis, Gray
& Simpson, 2000). In order to be successful in algebra, students need to suspend operations
for a while and think about properties which can be used to simplify the algebraic
expressions and thus be able to deal with the process-product duality at each step (Sfard,
1991).

These studies indicate that correct procedures of computation or correct parsing of
expressions are not sufficient to make the connection between arithmetic and algebra. One
way of establishing the connection is through emphasizing the structure of expressions and
explicitly engaging students in discussions about rules of transformation and possibilities
and constraints of transformation (e.g. Kirshner, 2001). It is this possibility that we follow
in our teaching approach. A few recent efforts to develop thinking about properties of
operations, numbers, relations between numbers and operations among young children in
the primary grades have provided insights into their abilities to generalize and formalize in
simple situations (e.g. Blanton & Kaput, 2001; Carpenter & Franke, 2001; Fujii &
Stephens, 2001).

Specially designed computer environments and spreadsheets have also been found to be
useful in connecting arithmetic and algebra and in making sense of algebraic representa-
tions and transformations in algebra (e.g. Thompson & Thompson 1987; Filloy, Rojano &
Rubio, 2001; Ainley, Bills, Wilson & Kirsty, 2005; Chaachoua, Nicaud, Bronner &
Bouhineau, 2004; Tabach & Friedlander, 2008). Even though many of these approaches
(especially spreadsheets) are closely tied to numerical methods and lead to an
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understanding of equivalence of algebraic expressions by focusing on its denotation, there
is not adequate attention paid to the structure of the expression, which includes an
understanding of the units or components of the expression and how each unit affects the
value of the expression. Computer intensive environments also provide the possibility to
focus on more challenging aspects of algebra like analysing and organizing information,
appropriate representation, and drawing valid conclusions, rather than working on only
symbol manipulation. However, it is not clear if these environments can sidestep the
problem of understanding symbols and symbol manipulations (Kieran, 2004).

In this study, we worked in a non-technology intensive, paper–pencil context appropriate
to the situation in most schools in India. We made an effort to first develop meaning for
symbols and operations among students in the context of ‘transformational activities’
(Kieran, 2004) and prepare them for beginning symbolic algebra. This part of the teaching
approach was called ‘reasoning about expressions’ and dealt with discussing possibilities
and constraints on operations in the contexts of evaluating/simplifying expressions,
discussing the meaning of symbols (integers, ‘=’, expressions, etc.), and comparing and
judging equality/equivalence of expressions. It was expected that these tasks would allow
the students to understand the operations and the properties associated with symbolic
expressions and their transformations (for example, one can add two numbers in any order
but not subtract, a×b is to be considered a unit, adding the units in any order does not
change the value of the expression). In each trial, we followed up these activities with tasks
based on representation, generalization, justification, and proof (e.g. pattern generalization
from shapes of figures, proving statements like sum of any two odd numbers is always even
where students need to identify an appropriate algebraic expression to represent the
situation and manipulate it in order to reach the conclusion). These were done in the end so
that students’ understanding of symbolic algebra could be used as a tool in the tasks. We
called this part ‘reasoning with expressions’. Due to constraint of space, we do not discuss
this part in the paper.

3 Description of the Research Study

The study was conducted as a design experiment (Cobb, Confrey, diSessa, Lehrer &
Schuble, 2003) during the period 2003–2005 over five trials. The teaching–learning
approach evolved through the five trials, with modifications made at the end of each trial
based on students’ understanding as revealed through the many tasks and our own
understanding of the phenomena. The first two trials were part of a pilot study and are not
discussed in detail in this report. The later three trials were part of the main study
(henceforth, MST-I, MST-II and MST-III). The students for the main study trials came from
two neighbouring schools (one English medium and one vernacular medium). These
schools catered to children from low and medium socio-economic backgrounds. For MST-I,
the students were randomly selected from a list of volunteers who had responded to our
invitation to participate in the programme, and the same students were invited for MST-II
and MST-III. All the three trials were held during the vacation periods of the school. MST-I
was conducted immediately after their grade 5 examinations in April–May, 2004, MST-II
when they were in the middle of grade 6 in October–November, 2004, and MST-III after the
completion of grade 6 in April–May, 2005. Thirty-one students from the main study trials
attended all the three trials—MST-I, MST-II and MST-III. Each trial consisted of 11–15
sessions of 1.5 h each. The students were taught in two groups, in the vernacular and the
English language respectively by the research team members. The process of selection of
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the students, and the organization of the programme was broadly similar for the pilot trials,
in which a different cohort of students participated. The topic area, the decision to use
students’ arithmetic knowledge to introduce beginning algebra and some of the structurally
oriented tasks were developed during the pilot trials.

Both the schools from which students for the main study were drawn followed the
syllabus and textbooks prescribed by the State Board. Of the topics covered by the study,
the school textbook for grade 6 includes integer operations, evaluation and simplification of
arithmetic and algebraic expressions in a traditional fashion — using precedence rules for
arithmetic expressions (including expressions containing multiple brackets) and distributive
property for algebraic expressions. Students also learn solution of simple linear equations,
which was not part of our programme. Discussion with students and a review of their
notebooks showed that only the vernacular medium school actually taught simplification of
algebraic expressions in grade 6; the English school omitted it. The two chapters of
arithmetic expressions and algebraic expressions take about 20–25 sessions of 35/40 min
each in school. The classroom transaction is largely oriented towards stating of rules and
demonstration of procedures followed by practice of some questions. Discussions about ‘=’
sign or equality/equivalence of expressions and what we call ‘reasoning with expressions’
are not part of the school syllabus.

Data were collected through pre and post-tests in each trial, interviews after MST-II (14
students, 8 weeks after MST-II) and MST-III (17 students, 16 weeks after MST-III), video
recording of the classes and interviews, teachers’ log and coding of daily worksheets. The
pre and post-tests consisted of around 25 items (both arithmetic and algebra) and took a
couple of hours to complete. They tested for students’ understanding of rules, procedures of
evaluating/simplifying expressions, understanding of equality/equivalence of expressions
and use of algebra to represent and justify/prove. The students were requested to show their
working for the tasks. The students chosen for the interview after MST-II had scores in the
tests which were below group average, average and above group average and contributed
actively to the classroom discussions. The same students were also interviewed after MST-
III along with a few additional students. Four of the students interviewed had each missed
one of the three post-tests but had participated in all the trials. The interviews probed their
understanding more deeply using tasks similar to those in the post test. The interview questions
after MST-II were restricted to transformations of arithmetic expressions whereas after MST-III
they included both arithmetic and algebraic expressions. Table 1 provides a summary of the
tasks from the post test and the interviews which will be analysed in this paper.

The study aimed at achieving internal consistency in students’ responses and reasoning
and evolving a coherent and complete teaching approach for beginning algebra. We worked
with multiple groups of students to increase the scope and the initial variability in the
approach. We were interested in observing and analysing the effects of the refined teaching
approach on students’ understanding and reasoning in the context of arithmetic and algebra.

4 Evolution of the ‘terms approach’

Some basic principles guided the teaching–learning approach. Students’ understanding and
intuitions/expectations in the context of arithmetic were used to guide their learning of symbolic
expressions in algebra and their transformation. We framed concepts, rules and tasks which
provided opportunities to work on their expectations, strengthening the right ones and
correcting the incorrect ones. For example, students know intuitively that addition and
multiplication are commutative but generalize it to subtraction and division; they also
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understand, without computation, that 34+29 is less than 34+31 but also think, using the same
strategy that, 34–17 is more than 34–16. This was consistent with viewing arithmetic as a
‘template’ on which the understanding of algebraic symbols and operations on them could be
built. Based on the literature review, we shifted the emphasis from mere computation of
expressions to focusing on the structural aspect of expressions—stating the information
contained in them, their value, the units which compose an expression and the transformations
under which the value of the expression will remain the same. Students’ understanding of
algebra was developed by using and extending their experiences with symbols in arithmetic in
specific ways. For example, the expression ‘4+3’ did not only stand for ‘7’ but also for the
information that ‘it is a number which is three more than four’. Multiple interpretations of ‘+’
and ‘−’ operations were similarly conveyed through meaning of sentences. Numbers were
attached with the signs preceding them to denote signed numbers that could represent the
amount of change—increase or decrease (e.g. change in the expression 26+13 vis-à-vis 25+14
can be represented by +1−1=0), or state a relation of ‘greater’ or ‘less than’ between two
numbers/quantities. Further, the structural similarity between arithmetic and algebraic
expressions was used to convey the need for similar rules of transformation. For example, the
units in expressions like 2+3×x and 2+3×5 or 2×5+ 3×5 and 2×x+3×x are similar, thus
warranting the same rules of transformation. In the first example, ‘3×5’ needs to be treated
like a unit and this constrains the possibility of the operation ‘2+3’. This constraint when
learnt in the context of arithmetic expressions can be fruitfully used in the context of algebra,
thus reducing the ‘conjoining’ error (2+3×x=5×x). In contrast to typical classroom
environments which focus on correct procedures and answers, we ensured that reasoning
underlined all tasks and activities, computational as well as non-computational.

Table 1 List of tasks given to the students in the tests and interviews

S.
no.

Task Example

1 Evaluation of arithmetic expressions

Simple expression (2 items in MST-I, 1 of each
kind; 3 items each in MST-II and III, 1 with
simple and product term, 2 with simple terms
only)

3+5×6 (simple and product terms) and 25−10+5
(simple terms only)

Complex expression (2 items in MST-I, 1 of each
kind; 3 each in MST-II and III, 1 with simple
terms, 2 with product terms)

69−26−11+26−8 (simple terms), 3×16+16×12−
16×7 and 7×18−6×11+4×18 (product terms)

2 Simplification of algebraic expressions (2 items in
MST-I, 1 in MST-II and 4 in MST-III)

5×x+16+7×x−11 and x+15−13×x−9

3 Judging equality of expressions

Rearranging terms ‘RT’ (similar task for
expressions with only simple terms and algebraic
expressions; 3 items in MST-I, 1 of each type; 2
items in MST-III, 1 with simple and product
terms and 1 algebraic expression)

Which of the following expressions are equal to
the expression 23+17×15+12 (simple and
product terms)?a—17+23×15+12, 23+17×12+
15 or 15×17+23+12, 23+12+17×15

Other transformations ‘OT’ (similar task for
expressions with simple terms only and algebraic
expressions; 2 items in MST-II, 1 with simple
and product terms and 1 algebraic expression; 2
items in MST-III, 1 with simple terms only and 1
with simple and product terms)

Which of the following expressions are equal to the
expression 23−4×6−9 (simple and product
terms)?—23−(4×6+9), 23−4×6−8+1 or 23−
(7−3)×6−9, 22−4×6−8

a Item marked correct only when all expressions in the list were judged correctly
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The teaching approach aimed to strengthen students’ understanding of procedures
(knowledge of rules, conventions and procedures for working on expressions) and sense of
structure (sense of the composition of the expression, how the components are related to the
value of the expression and their relation among each other) in order to make a connection
between the rules and properties used in arithmetic and the symbolic transformations in
beginning algebra. The approach developed over multiple trials of the pilot and the main
study. Only by the second trial of the main study (MST-II) did we succeed in evolving a
formulation of rules and procedures in structural terms together with a set of tasks that
could develop a strong understanding of procedures and structure and had the potential to
connect arithmetic with beginning symbolic algebra. We first describe some of the
difficulties in the earlier version of the teaching approach adopted in MST-I and then give a
brief outline of the concepts and operations involved in the mature teaching approach.

In the MST-I, the approach emphasized the sequential operations in accordance with the
precedence rules for evaluating arithmetic expressions—multiplication before addition,
addition and subtraction to be operated sequentially, proceeding from left to right. To
enhance students’ understanding of structure of expressions, we introduced the concept of
‘term’ (units of expressions of which it is composed) in the context of evaluation of
expressions to check if any precedence rule is required or one could compute sequentially
from left to right. The concept was used largely for identifying and generating equal
expressions; the transformation restricted to rearranging terms or numbers. It was expected
that through the repeated use of ‘terms’ and precedence rules or sequential operations on
arithmetic expressions, the students would be able to develop a sense of structure of
expressions and would be able to abstract the constraints and possibilities of operations.
However, we realized the use of ‘terms’ in both the contexts of evaluation and of
identifying or generating equal expressions was rule governed and rigid; students made no
connection between the two tasks. Moreover, the students failed to connect the precedence
based/sequential procedures for evaluating arithmetic expressions and the rules for
simplifying algebraic expressions. We defined ‘like’ and ‘unlike’ terms for simplifying
algebraic expressions, which also required non-sequential, property-based transformation
rules, like distributive property. This was hard for students to reconcile with their earlier
instruction on evaluating arithmetic expressions and they continued to make structural
errors and failed to constrain operations like 2+3×x=5×x (‘conjoining’ error) in the
context of algebra. Evaluating and checking if two such algebraic expressions led to the
same numerical value for a value of the letter was not of much help in convincing the
students about the incorrectness of such a transformation. The students had not grasped the
important idea that valid transformations ought to leave the value of the expression
unchanged and thus transformed expressions will always be equal/equivalent. Thus, the
concept of ‘equality’ seemed to be crucial for understanding transformations of algebraic
expressions. It was factors such as this that prompted us to change to an approach that
formulated rules and procedures in structural terms leading to a potentially closer
integration of the responses to procedural and structural aspects.

In the more refined teaching approach used in MST-II, we used the concepts ‘term’,
‘equality’ and ‘expression’ and the operation ‘combining terms’ in order to establish the
connection between procedure and structure on the one hand and between transformations
on arithmetic and algebraic expressions on the other. We also made ‘terms’ of an expression
visually salient by enclosing each term in a rectangular box. Terms are units of the
expression demarcated by ‘+’ or ‘–’ signs; they can be transposed without changing the
value of the expression and allow unambiguous parsing of expressions. For example, in the
expression 12+3×5, +12 and +3×5 are the two terms, with the former being called a
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simple term and the latter a product term. Terms are of two kinds: simple terms and
complex terms. Complex terms include product term and bracket term (e.g. –(3+5)). The
factors of the product term can be numerical (like +2×3) or variable (like +2×a). +a or –a
can also be rewritten as product term (±1×a) with one variable factor and the other factor
being 1. Rules for evaluating and simplifying expressions were reformulated using the
concept of ‘term’ and replaced the precedence rules for evaluation of expressions that were
used in MST-I. Simple terms could be combined in a way similar to adding integers, using
the compensation model: that equal and opposite terms cancel each other, positive term
increases the value and negative term decreases the value of the expression (e.g. +4−
3=+1). In expressions with simple and product terms with numerical factors, product
terms needed to be simplified into a simple term before combining them with other
simple terms (e.g. +2+3×5=+2+15=+17). In expressions containing two or more
product terms with a common factor, terms could also be combined by extracting the
common factor (e.g. +2×5+2×3=+2×(5+3)=+2×8=+16). These rules provided
flexibility in the order in which terms could be combined and also made it possible
to discuss the possibilities and constraints of operations, thus deepening students’
understanding of equality of expressions. This paved the way for identifying and
generating equal expressions using a variety of transformations. It was expected that
these rules would integrate transformations of arithmetic and algebraic expressions, as
a result of enabling general understanding of procedures.

Even though we continued to test the students on each kind of task/item as described in
Table 1 in each trial, we tried not to practice them in every trial. The expressions and the
transformations were successively made more complex as the trials progressed, which is
reflected in the test items. The new rules, which were only introduced in MST-II, were
extensively discussed and used in the context of evaluating simple and complex arithmetic
expressions with less time spent on simplification of algebraic expressions. During MST-III,
we focused on developing understanding of evaluation of complex bracketed expressions
(e.g. 23−4×(2+3×5)) and simplification of algebraic expressions, together with tasks
based on pattern generalization, proving and justifying. About six to seven sessions in each
trial were devoted to tasks being discussed in this paper, and the remaining sessions focused
on the various other tasks, such as understanding meaning of expressions, equality and
integers; integer operations, evaluation of bracketed expressions and bracket opening rules,
and using algebra as a tool for representing and in contexts of pattern generalization and
justification.

5 Analysis of data and results

The performance of students in the post-tests of the three Main Study Trials in the various
tasks together with the group average in each trial is given in Table 2. The table shows that
students improved their performance over the trials in each of the tasks, leading to a better
overall performance in these tasks, indicated by the group average.

Moreover, we can see each student’s improvement across the trials in Fig. 1. Each
column of dots indicates a single student’s scores in the three trials. It shows that students’
performance in MST-I is generally low even though the items in MST-I were fewer and
simpler. The scores in MST-II are quite dispersed, some students scoring lower than MST-I
and some higher than MST-I. The reasons will be clear from the more detailed discussion
later on the nature of the items in the post-test of MST-II and students’ performance on
them. However, most of the students substantially improved their performance in MST-III
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and closed at a level higher than earlier. Also, most students in the lower half (lower right
corner) during MST-I made significant improvements by the end of the three trials. A
detailed analysis of each of the tasks reveals the aspects of students’ understanding that
improved over the trials. In the sections below, we describe the nature of changes that were
seen in students’ solutions and explanations.

5.1 Awareness of structure in evaluating arithmetic expressions

One of the important insights gained through the repeated trials was that seemingly
procedural tasks such as evaluation of arithmetic expressions can be used to enhance
students’ awareness of structure as well as assess their structure sense. We discuss here
responses of students to the tasks of evaluating arithmetic expressions and how these
responses changed over time.

In the pre-test of MST-I, although many students correctly evaluated simple arithmetic
expressions with ‘simple terms’ only (e.g. 19−3+6, 64% correct), they did not follow the
correct convention for precedence of multiplication while evaluating expressions with ‘simple
and product terms’ (e.g. 7+3×5, 12% correct). In the post-test of MST-I and in the later trials,
their performance was almost similar in both the expressions and there was a marked
improvement in their performance with respect to expressions with both simple and product
terms. The increase in performance was accompanied by a decrease in the structural errors
such as computing the expression 7+3×4 as 10×4 (‘LR’ or left to right error) or 19−3+6 as
19−9 (‘detachment’ error, Linchevski & Livneh, 1999). Interviews with students also revealed
students’ abilities to use the structure of expressions to decide the validity of a transformation.

Table 2 Performance of students (as percentage of correct responses) in the different tasks in the post-tests
of the three trials (N=31)

Evaluation of
arithmetic expressions

Simplification
of algebraic
expressions

Equality of
arithmetic
expressions

Equality of
algebraic
expressions

Group average

Simple Complex RT OT RT OT

MST-I 68 50 29 58 – 61 – 4.7/9 (52%)

MST-II 89 54 19 – 53 – 62 12.7/19 (66.8%)

MST-III 85 74 84 77 74 87 – 15.7/20 (78.5%)

RT rearranging terms, OT Other transformations

Student performance across trials
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Fig. 1 Individual student’s perfor-
mance (as percentage of correct
responses) across the three trials:
MST-I, II and III (N=31)
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They did not accept transformations like 5+3×6=8×6 or 30+3, 25−10+5=25−15 by clearly
indicating in the first case that factors of product terms cannot be separated and in the second
case −15 is possible only if there is bracket around (10+5).

The task of evaluating more complex expressions (e.g. −28+49+8+20–49 and 7×18−6×
11+4×18) was created so as to de-emphasize precedence/sequential operations and encourage
students to focus on the structure of the expressions, thereby using the relationships among the
terms to make the computation simple. As seen in Table 2, students gradually improved their
performance in evaluating the more complex arithmetic expressions. Table 3 shows the
number of errors in the different items as well as the strategies used to solve the expressions
across the trials. A strategy was categorized as ‘relational (RS)’ when students attended to the
structure of the expressions and found efficient methods of combining terms so as to
minimize calculations. On the other hand, a strategy was categorized as based on ‘Precedence
rules (PR)’ when students followed a sequential order or gave precedence to a multiplication
operation. The ‘RS’ strategies were spontaneously generated by students for expressions with
only ‘simple terms’ while they had to learn the distributive property in order to apply
relational strategies to compute expressions with only ‘product terms’ with a common factor.
For the expressions with only product terms, we see a lower proportion of ‘RS’ strategy as
compared to expressions with only simple terms.

With the evolution and adoption of the ‘terms approach’ inMST-II andMST-III, the students’
work shows an increasing use of relational strategies and more flexible methods of evaluating
expressions using relationships between the terms, thus showing an increased awareness of
structure of expressions. In MST-I, the students did not take advantage of the relations which
existed between the terms as seen in Fig. 2a, b. Rather, they proceeded to evaluate the
expressions sequentially using precedence rules even after identifying the relationships
between terms. The students’ work in MST-II and MST-III (Fig. 2c–f) show that relationships
were identified and terms were combined flexibly. (Fig. 2d shows an instance of what was the
most common error in MST-II while combining product terms—students using the wrong
sign when they had to combine product terms with a common factor.)

5.2 Simplification of algebraic expressions

We had reformulated the rules of transformation by highlighting the structure of expressions
using the concept of ‘term’ in MST-II. We expected that this would lead to better connection
between arithmetic and algebra and thus better performance in the algebraic simplification
task. The data of Table 2 presented earlier show that students performed well on the task of

Table 3 Number of student responses by strategy in evaluating complex arithmetic expressions in the three
trials (N=31)

Sample item MST-I (post) MST-II (post) MST-III (post)

RS PR RS PR RS PR

69−26−11+26−8 13 (4*) 11 (4*) 30 (4*) 1 (1*) 28 (3*) 3 (0*)

3×16+16×12−16×7 – – 21 (7*) 8 (3*) 21 (3*) 10 (3*)

7×18−6×11+4×18 6 (1*) 15 (8*) 18 (17*) 9 (5*) 22 (7*) 9 (4*)

Arbitrary solutions and ‘no attempts’ not accounted for in the table

RS relational strategy, PR precedence rules

*Number of incorrect responses
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simplifying algebraic expressions only in MST-III. In MST-I, students were still simplifying
algebraic expressions using the traditional approach of identifying like terms (Fig. 3a, b). In
MST-II, although students were able to simplify algebraic expressions using strategies
similar to those used for arithmetic expressions, they made many errors; some due to the
integer operations involved and some non-systematic errors like changing the term x+15
into x×15 (Fig. 3d. About 16% of the students made this error). In MST-III (Fig. 3e, f),
students were better at dealing with ‘singleton’ terms like ‘x’ and at integer operations, and
most students could produce correct simplifications by extracting the common factors,
similar to arithmetic expressions discussed earlier.

The increase in performance in simplifying algebraic expressions was accompanied by a
decrease in structural errors. In MST-I, the conjoining error was repeatedly seen, throughout
the steps of the simplification process (Fig. 3a). The conjoining error reduced from 31% in
MST-I to 26% in MST-II and none in MST-III. Some other errors, such as change of sign,
change of term, arbitrary solution process also reduced (18% in MST-I, 45% in MST-II and
10% in MST-III).

All students interviewed after MST-III could explain their procedures of simplifying
algebraic expressions confidently. Students predominantly explained the simplification
process by repeating the procedure they carried out, accompanied by statements like

a b

c d

e

f

MST-I

MST-II

MST-III

AN AB

AY BP

MC

AS

Fig. 2 Sample of students’ evaluation of complex arithmetic expressions using ‘relational’ and ‘precedence’
strategies in the post-test of the three main study trials
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product terms can be combined by extracting a common factor and a simple and a product
term cannot be combined. The student BK indicated the common factor ‘a’, and stated the
fact that it will have the same numerical value for both occurrences, allowing the extraction
of the common factor: ‘it is +5×a+6−2×a+9. These two [+5×a−2×a] are same
therefore +a×(5−2)’. When asked if a×3+15 can be simplified further, the student SV
explained why this was not possible: ‘Because a×3 is the product, you should not do 15+3
and write. The product term is to be done first’. Both these students used their
understanding of evaluating arithmetic expressions to transform algebraic expressions.

To check the robustness of students’ understanding of simplification of algebraic expressions,
they were further asked to predict the value of the original expression (e.g. 5×a+6−2×a+9)
given the value of the simplified expression (e.g. a×3+15) for a value of the letter (e.g. a=4).
Eleven out of the 17 students interviewed, knew without resorting to calculation that the given
expression and the final simplified expression are equal for all values of the letter. These
students gave the following kinds of explanations:

SV: ‘This expression [5×a+6−2×a+9] and this expression [a×3+15] are equal’

NW: ‘This expression [5×a+6−2×a+9] has been written in a simpler form’

BK: ‘Because this is a product term and we do not know what the number ‘a’ is. So
we have to do it like this only’.

One student further articulated that just as the original expression could be simplified,
similarly the simplified expression could be again converted into the original expression.

MST-I

MST-II

MST-III

a b

c d

e f

RD RS

AN KC

MK BK

Fig. 3 Example of students’ work on simplification of algebraic expressions in the post-test of the three trials
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Six of the 17 students were not so confident and actually calculated the values of the
original (by combining the product terms) and the simplified expressions for a given value
of the letter, reaching the same conclusion as above. Except one, all these students
appreciated the generality of the result after computation. Students’ explanation for the
equivalence of all the steps in the simplification procedure was largely drawn from their
experience of evaluating similar arithmetic expressions and their abilities to mentally go
through that procedure in the context of algebraic expressions.

5.3 Understanding of equality/equivalence of expressions

The task of identifying equal expressions from a list without computation was designed to
directly tap into students’ understanding of structure of expressions and encouraged them to
use the idea of terms. The initial tasks were simple, with the only transformation applied to
the expression being rearranging terms and numbers (MST-I). In MST-II and MST-III, the
task was made more complex by including a variety of transformations. The pre-test data in
MST-I showed that few students could identify equality of expressions without computation
(15% correct). The percentage of correct responses in the post-test is similar over the first
two trials, but the items in MST-II were more complex than MST-I (see Table 2 for
performance data and Table 1 for types of transformations). The performance in identifying
equality of expressions for both kinds of transformations (rearranging terms and others)
improved in MST-III. (In MST-III, each item/expression involved only one type of
transformation, while some items/expressions in MST-II combined different types of
transformations.) Their performance in identifying equivalent algebraic expressions was
slightly better than for arithmetic expressions, and slightly ahead of their ability to simplify
algebraic expressions.

The performance varied depending on the transformation/s used. For example, only 25%
of the students in MST-II could judge the equality of the expressions 18−27+4×6−15 and
8×4−15+18−2×4−27. A large number of students could identify the equality of
expressions like 18−27+4×6−15 and 4×6−(27+15)+18 (77% during MST-II and 93%
in the post-test of MST-III).

The interviews after MST-II and III revealed that most students could infer the equality/
equivalence of expressions by focusing on the structure of the expressions. A few students
complemented this understanding with computations (computing parts of expressions) to be
doubly sure. Students were given three to four alternative expressions to judge their equality
with respect to a given expression. For example, the student AY in the interview after MST-II
correctly judged the inequality of the expressions 49−37+23 and 49−5−37−5+23. Although
a bit hesitant in the beginning, he gave a reason which incorporated both an understanding of
structure of expressions and integer operations. He stated ‘Because here −5–5 is extra. Had it
been −5+5 then subtracting would have given us 0 but here it is both –5′.

In MST-III, a further probe was used when students correctly judged two arithmetic
expressions as not equal—they were asked which expression was greater. Students used
their understanding of procedures and structure sense to draw their conclusions. For
example, JS concluded that the expression 24−13+18×6 was bigger than 24+18−13×6
because ‘Here +18×6 is there which would give more answer, and here if we do −13×6 it
will give less answer’. She ignored the marginal increase in value of 24+18 compared
with 24−13 and attended to the significant difference caused due to the terms +18×6
and −13×6.

Bracketed expressions presented some students with difficulties which arose largely as a
result of their not seeing the equivalence between using the bracket as a precedence
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operation and bracket opening rules. This can be seen from AY’s reason (in MST-III) for
why he thought the expressions 24−13+18×6 and 24−(13−18×6) to be ‘equal’ as well as
‘not equal’. On the one hand he explained that ‘Because three numbers are in the bracket,
so the answer for these two [13−18×6] have to be found inside the bracket and whatever
answer comes that has to be kept inside bracket and then do it with this [24] then you would
get it not equal.’. On the other hand, he also held the belief that they were equal as ‘if we
open the bracket first then we get +18×6.’.

Students were not mechanically identifying equal expressions and connected the fact that
equal expressions would have equal values. One student TJ remarked during the interview
‘If they [expressions] were equal, then only [only then] their value would have been equal.
And these expressions are different, the terms have been changed, therefore the answers
will also be different’.

Students showed a good understanding of the fact that equivalent algebraic expressions
are equal for all values of the letter. Ten students could straightway state this fact, whereas
four others substituted the value of the letter to see if they were equal arithmetic
expressions and three more calculated parts of the expression to conclude that the
equivalent algebraic expressions will have equal values. Illustrating this with an example,
BK stated that 13m−7−8×4+m and 13×m−7−8×m+4 will not lead to the same value for
m=2 as ‘Because it is 8×4 [in the first expression], if it [the value of m] is 4 here then it
would be the same value for both’. However, she agreed that the expressions −7+4+13×
m–m×8 and 13×m–7–8×m+4 would be equal as ‘Because, m is any number, if we put any
number for that then they would be the same’.

Students used the same strategies and the same vocabulary to reason about trans-
formations in arithmetic and algebra. Moreover, their understanding of procedures and
structure complemented each other as seen in many of the students’ responses.

6 Discussion and conclusions

The study proposes an approach to introduce symbolic algebra by supporting students’
awareness of the structural similarity of arithmetic and algebraic expressions. The approach
was motivated by the extensive literature indicating this to be an important idea for learning
symbolic transformations in algebra. It supported and developed students’ intuitive
understanding of operations and numbers by introducing them to a structural way of
perceiving expressions using a vocabulary of ‘terms’, different types of terms and equality/
equivalence. Even though precedence rules are sufficient for evaluating expressions in
arithmetic, they are not sufficient to transform algebraic expressions. One has to learn the
constraints and possibilities on transformations in order to understand algebraic
manipulations (Mason, Graham, Pimm & Gowar, 1985). Awareness of structure of
expressions helps students understand these better, thus leading to a better understanding
of rules and procedures. Arithmetic expressions provide the necessary background for this
kind of learning, which can be generalized to understand transformations in algebra. In
addition, in our programme, the visual salience of terms seems to have helped students both
in computational and non-computational tasks.

The analysis of students’ responses to a variety of tasks shows that students by the end
of the third trial were able to (1) use their awareness of structure to evaluate arithmetic
expressions in a flexible manner, reducing the structural errors, (2) use this awareness of
structure consistently to judge equality of expressions, (3) understand that valid trans-
formations lead to equal expressions and understand the conditions when the value of
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expressions remains the same, (4) use procedure sense and structure sense of expressions in
a complementary manner to solve or reason about a task, and (5) use similar reasoning and
transformations across arithmetic and algebraic expressions. In our view, these are major
gains achieved towards the end of the programme. On the one hand, understanding about
equality of expressions strengthened and introduced flexibility in the procedures of
evaluating expressions. On the other hand, discussions regarding equality of expression,
that is, transformations which could possibly keep the value of the expression the same,
required the students to use procedural knowledge of evaluation of expressions. Students
did not, however, compute the value of the expressions in order to judge their equality but
compared the terms—a conceptual rather than an empirical approach. In these situations,
they displayed a sense of reversibility and substitution—that an expression or a part of an
expression can be replaced by a number and vice versa. Thus, their procedural and
structural knowledge complemented each other and improved their overall understanding of
expressions.

Given the vast literature which exists on students’ understanding (or lack of it) of
syntactic transformations (e.g. Kieran, 1992; Liebenberg, Linchevski, Sasman & Olivier,
1999; Liebenberg, Sasman & Olivier, 1999; Malara & Iaderosa, 1999; Cerulli & Mariotti,
2001) and some data from within this country (Banerjee, 2000), it is very unlikely that the
traditional teaching–learning process in the school helps in developing such an
understanding of expressions. Although it may be hard to separate the effects of more
teaching from refined teaching in this study due to its design, it is worthwhile to attend to
the improvements made by the students in the three trials. A part of the reason for the long
duration of the programme was that the approach evolved and was modified in significant
ways after MST-I, and in MST-II, time was spent on covering the same topics using the
modified approach. Secondly, an approach that makes a smoother transition needs treating
topics both in arithmetic and in beginning algebra in a more elaborate manner than is done
in the traditional curriculum.

Another notable point that the study brought home is the inadequacy of the incomplete
structural approach adopted in the earlier trials and the realization that the mere presence in
the earlier trials (and in some earlier studies) of structural notions or tasks that focus on the
structure of expressions, is not sufficient to bridge the gap between arithmetic and algebra.
The earlier trials, which dichotomized procedural knowledge and structural understanding
of expressions fell short of supporting students to make the transition to algebra. At that
point, students could not see multiple ways of evaluating arithmetic expressions (by
combining terms in different order) leading to the same value, they followed precedence
rules and sequential evaluation procedures, ignoring relationships between the terms within
an expression. They could not also generalize the knowledge of rules and procedures
gained in the arithmetic context to algebra. What was needed was a focus away from
computations towards understanding the structure of expressions, that is, identifying the
components of expressions which contribute to its value and which remain invariant
through valid transformations, thereby developing a deeper understanding about equality of
expressions. Further, in the later trials rules of transformation formulated using structural
notions were used to analyse both arithmetic and algebraic expressions, which allowed the
students to connect arithmetic and algebra.

This study acted as a platform for us to observe the developing understanding of students
with respect to syntactic transformations on expressions, given a certain kind of teaching–
learning situation. The study was evolutionary in nature and therefore we can only point out the
potential of the approach in creating meaning for symbolic transformation of expressions in
both arithmetic and algebraic contexts, which students at this level can relate to. We do
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understand that algebra is not all about generalizing from arithmetic and is not only about
symbol manipulation. It is yet to be seen how well these students use this understanding of
symbolic algebra to deal with situations where algebra acts as a tool for proving, justifying,
generalizing. Another direction in which the approach needs to be further developed is the
incorporation of more complex symbol manipulation in the context of algebra.
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