# Thinking Algebraically 

Dr. Aaloka Kanhere<br>Homi Bhabha Centre for Science Education<br>18.03 .2010

- Algebra is an very important domain of school mathematics.
- A lot of researchers have extensively studied
- the nature of algebra
- the difference between arithmetic and algebra
- the difficulties which students face while learning algebra
- the reasons why students find algebra difficult


## Children's difficulties in algebra

(1) Inadequate understanding of ' $=$ ' sign

- $4+5=9$
- $3+4=2+5$
- $7+4-6+9=11=11-6=5=5+9=14$
(2) Difficulties with letters
- $3 a+5=8$
- $2 \mathrm{a}+5 \mathrm{~b}=7 \mathrm{ab}$
(3) Difficulties with notations and conventions
- $a+3=3 a \quad a \times 3=3 a$
- $(a+3) \times 2=a+3 \times 2$


## Problems in equality sign

What to you think most children's response to this question will be?
$8+4=\square+5$
7? 12? 17?
The table below contains responses children from 30 primary classes in the US.

Grade $\quad \begin{array}{lllll}7 & 12 & 17 & 12 \text { and } 17\end{array}$

| 1 and 2 | $\mathbf{5}$ | 58 | 13 | 8 |
| :--- | :--- | :--- | :--- | :---: |
| 3 and 4 | $\mathbf{9}$ | 49 | 25 | 10 |
| 5 and 6 | $\mathbf{2}$ | 76 | 21 | 2 |

## Student's reasons for the wrong answer

Given below are responses of two students to the question, What number would you put in the box to make the number sentence true?
$8+4=\square+5$
Student 2: Its 17.
Teacher: How do you know it is 17 ?
Student 1: [After a brief period] 12
Teacher: How do you know that its 12?
Student 1: Because thats the answer, 8 and 4 are 12. See, I counted, 8 [pause] 9, 10, 11, 12. See its 12.
Teacher: What about this 5 over here? [Pointing to the 5 in the number sentence]
Student 1: That's just there.
Student 2: Because I know that 8 and 4 is 12 and 5 more is 17 .
Teacher: Why did you add all those
numbers?
Student 2: Because it says to add.
Teacher: Okay. But these two
numbers are over here on this side of the equal sign [points at $8+4$ ] and the 5 is over here.
Student 2: Yeah, but you have to add all the numbers. That's what it

## Misconceptions about the equality sign

- They do not understand that equality sign denotes relation between two equal quantities
- They interpret the equal sign as a command to carry out a calculation
- For example:

When a teacher asked her student if $2=1+1$ was true, the student said,
'I am not sure, it's backward, the one plus one is on the other side'

## How can this be avoided?

A lot of times, we use the equal sign as a shorthand for a variety of reasons.

- Listing numerical characteristic of people or things:

Rakesh $=7$ years, Salma $=30 \mathrm{~kg}$

- Designating the number of objects in a collection:

- Using equality to represent a string of calculations:

$$
20+30+7+8
$$

## How can this be avoided?

A lot of times, we use the equal sign as a shorthand for a variety of reasons.

- Listing numerical characteristic of people or things:

Rakesh $=7$ years, Salma $=30 \mathrm{~kg}$

- Designating the number of objects in a collection:

- Using equality to represent a string of calculations:

$$
\begin{aligned}
20+30+7+8 & =20+30 \\
& =50+7 \\
& =57+8 \\
& =65
\end{aligned}
$$

## What is the relationship between algebra and arithmetic?

- Algebra can be related to arithmetic in two ways:
(1) Recognizing properties of operations like commutativity, associativity or distributivity.
- For example : $a+b=b+a$
(2) Solutions of numerical equations
- For example : $x+y=12$


## Nature of solution: Arithmetic or Algebraic?

Given below are responses of two students to the question, What number would you put in the box to make the number sentence true?

$$
8+4=\square+5
$$

Student 1: [After some time] It's 7.
Teacher: How do you know that it is 7 ? Student 1: Well, $8+4$ is 12 . So I had to figure out what to go with 5 to make 12 , and I figured out that it was 7 .
Teacher: So why did you want to figure out what to put with 5 to make 12 ?
Student 1: Because I had 12 over here [pointing to the left of the equal to sign], so I had to have 12 over here [pointing to the right of the equal to sign]. And 5 and 7 is 12.

Student 2: [Very quickly] Seven Teacher: How do you know it is 7 ?
Student 2: Well, I saw the 5 over here[ pointing to the 5 in the number sentence], was one more than 4 over here [pointing out], so the number in the box had to be one less than 8 . So its 7 .
Teacher: Thats very interesting. Let's try another one. How about
$57+86=\square+84$ ?
Student 2: [Almost immediately] Thats easy. 59
Teacher: That was quick! Student 2: It's just like the other one. Its just two more because 84 is two less.

## Comparing the two answers

Though both the solutions given by the students were correct there was a big difference in the strategies used.
What was the difference between the solutions given by the two students?

- Student 1 solved the problem arithmetically.
- He added $8+4$ to get 12 and then subtracted 5 from 12 to get 7 .
- When he comes across a problem like: $57+86=\square+84$ or similar problems with bigger numbers he will calculate the answer from problem to problem.
- Student 2 solved the problem algebraically.
- She compared the two sides and found a relation between the two pairs of addends.
- Hence she could $57+86=\square+84$ very quickly.


## How can you help the student think 'algebraically'?

- Work out 'true or false' number sentences.
- Number sentences can help them make conjectures.
- Use patterns to develop relational thinking.
- Number sentences with a pattern helps the students read the pattern and find relations themselves.
- Questions which make them generalize


## Questions which might help



How many different ways can you find to count the border tiles of an $4 \times 4$ pool without counting them one at a time?
Use the expression you get to predict how many border tiles will be needed if the pool is $75 \times 75$.

These are some of the answers had students had got

- $4 \times 5$
- $(4 \times 4)+4$
- $(4 \times 6)-4$
- $6^{2}-4^{2}$


## Aspects of algebraic thinking

- Reading patterns
- Generalizations
- Making conjectures
- Proving them


## THANK YOU

