Thinking Algebraically

Dr. Aaloka Kanhere

Homi Bhabha Centre for Science Education

18.03.2010

- Algebra is an very important domain of school mathematics.
- A lot of researchers have extensively studied
 - the nature of algebra
 - the difference between arithmetic and algebra
 - the difficulties which students face while learning algebra
 - the reasons why students find algebra difficult

Inadequate understanding of '=' sign

•
$$3 + 4 = 2 + 5$$

- 7 + 4 6 + 9 = 11 = 11 6 = 5 = 5 + 9 = 14
- 2 Difficulties with letters
 - 3a + 5 = 8
 - 2a + 5b = 7 ab
- Oifficulties with notations and conventions

•
$$(a + 3) \times 2 = a + 3 \times 2$$

What to you think most children's response to this question will be? $8 + 4 = \Box + 5$ 7? 12? 17? The table below contains responses children from 30 primary classes in the US.

Grade	7	12	17	12 and 17
	_			
1 and 2	5	58	13	8
3 and 4	9	49	25	10
5 and 6	2	76	21	2

Student's reasons for the wrong answer

Given below are responses of two students to the question, What number would you put in the box to make the number sentence true?

 $8+4=\Box+5$

Student 1: [After a brief period] 12 **Teacher:** How do you know that its 12?

Student 1: Because thats the answer, 8 and 4 are 12. See, I counted, 8 [pause] 9, 10, 11, 12. See its 12. **Teacher:** What about this 5 over here? [Pointing to the 5 in the number sentence]

Student 1: That's just there.

Student 2: Its 17.

the 5 is over here.

Teacher: How do you know it is 17? Student 2: Because I know that 8 and 4 is 12 and 5 more is 17. Teacher: Why did you add all those numbers? Student 2: Because it says to add. Teacher: Okay. But these two numbers are over here on this side of

the equal sign [points at 8 + 4] and

Student 2: Yeah, but you have to add all the numbers. That's what it

- They do not understand that equality sign denotes **relation** between two equal quantities
- They interpret the equal sign as a **command** to carry out a calculation
- For example:

When a teacher asked her student if 2 = 1 + 1 was true, the student said,

'I am not sure, it's backward, the one plus one is on the other side'

How can this be avoided?

A lot of times, we use the equal sign as a shorthand for a variety of reasons.

- Listing numerical characteristic of people or things: Rakesh = 7 years, Salma = 30 kg
- Designating the number of objects in a collection:

• Using equality to represent a string of calculations:

$$20 + 30 + 7 + 8$$

How can this be avoided?

A lot of times, we use the equal sign as a shorthand for a variety of reasons.

- Listing numerical characteristic of people or things: Rakesh = 7 years, Salma = 30 kg
- Designating the number of objects in a collection:

• Using equality to represent a string of calculations:

$$20 + 30 + 7 + 8 = 20 + 30$$

= 50 + 7
= 57 + 8
= 65

- Algebra can be related to arithmetic in two ways:
- Recognizing properties of operations like commutativity, associativity or distributivity.
 - For example : a + b = b + a
- Solutions of numerical equations
 - For example : x + y = 12

Nature of solution: Arithmetic or Algebraic?

Given below are responses of two students to the question, What number would you put in the box to make the number sentence true? $8 + 4 = \Box + 5$

Student 1: [After some time] It's 7. **Teacher:** How do you know that it is 7? Student 1: Well, 8 + 4 is 12. So I had to figure out what to go with 5 to make 12, and I figured out that it was 7. **Teacher:** So why did you want to figure out what to put with 5 to make 12? Student 1: Because I had 12 over here pointing to the left of the equal to sign], so I had to have 12 over here pointing to the right of the equal to sign]. And 5 and 7 is 12.

Student 2: [Very quickly] Seven Teacher: How do you know it is 7? **Student 2:** Well, I saw the 5 over here pointing to the 5 in the number sentence], was one more than 4 over here [pointing out], so the number in the box had to be one less than 8. So its 7. **Teacher:** Thats very interesting. Let's try another one. How about $57 + 86 = \Box + 84?$ **Student 2:** [Almost immediately] Thats easy. 59 Teacher: That was quick! Student 2: It's just like the other one. Its just two

・ロト ・ 日 ・ ・ 目 ト ・

more because 84 is two less.

Though both the solutions given by the students were correct there was a big difference in the strategies used.

What was the difference between the solutions given by the two students?

- Student 1 solved the problem arithmetically.
 - He added 8 + 4 to get 12 and then subtracted 5 from 12 to get 7.
 - When he comes across a problem like: 57 + 86 = □ + 84 or similar problems with bigger numbers he will calculate the answer from problem to problem.
- Student 2 solved the problem algebraically.
 - She compared the two sides and found a relation between the two pairs of addends.
 - Hence she could $57 + 86 = \Box + 84$ very quickly.

< ∃ > < ∃

- Work out 'true or false' number sentences.
 - Number sentences can help them make conjectures.
- Use patterns to develop relational thinking.
 - Number sentences with a pattern helps the students read the pattern and find relations themselves.
- Questions which make them generalize

How many different ways can you find to count the border tiles of an 4 \times 4 pool without counting them one at a time?

Use the expression you get to predict how many

border tiles will be needed if the pool is 75×75 .

These are some of the answers had students had got

- 4 × 5
- (4 × 4) + 4
- (4 × 6) 4
- $6^2 4^2$

- Reading patterns
- Generalizations
- Making conjectures
- Proving them

THANK YOU